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Abstract. Imposing smoothness priors is a key idea of the top-ranked
global stereo models. Recent progresses demonstrated the power of sec-
ond order priors which are usually defined by either explicitly consid-
ering three-pixel neighborhoods, or implicitly using a so-called 3D-label
for each pixel. In contrast to the traditional first-order priors which only
prefer fronto-parallel surfaces, second-order priors encourage arbitrary
collinear structures. However, we still can find defective regions in match-
ing results even under such powerful priors, e.g., large textureless regions.
One reason is that most of the stereo models are non-convex, where pixel-
wise smoothness priors, i.e., local constraints, are too flexible to prevent
the solution from trapping in bad local minimums. On the other hand,
long-range spatial constraints, especially the segment-based priors, have
advantages on this problem. However, segment-based priors are too rigid
to handle curved surfaces. We present a mixture model to combine the
benefits of these two kinds of priors, whose energy function consists of
two terms 1) a Laplacian operator on the disparity map which imposes
pixel-wise second-order smoothness; 2) a segment-wise matching cost as
a function of quadratic surface, which encourages “as-rigid-as-possible”
smoothness. To effectively solve the problem, we introduce an interme-
diate term to decouple the two subenergies, which enables an alternated
optimization algorithm that is about an order of magnitude faster than
PatchMatch [1]. Our approach is one of the top ranked models on the
Middlebury benchmark at sub-pixel accuracy.

1 Introduction

Stereo correspondence is a core problem in computer vision. Following the ter-
minology of [2], existing approaches are classified as local or global methods. For
most of the top-ranked global methods, a clear clue is that they usually impose
smoothness priors on disparity, e.g., first order priors [2][3][4], second-order priors
[1][5] and segment-based priors [6][7][8][9]. Each kind of priors has special advan-
tages as well as limitations. The goal of this paper is to develop a new global stereo
model to combine advantages of second-order and segment-based priors.

1.1 Background

For a comprehensive discussion on dense two-frame stereo matching, we refer
readers to the survey conducted by Scharstein and Szelisky [2]. In this paper, we
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only discuss two categories of works related to smoothness priors, i.e., second-
order and segment-based priors.

In contrast to the widely used first order prior defined on two-pixel neighbor-
hoods p and q, S(q, {p}) = ‖D(p)−D(q)‖1, which increases monotonically as the
neighborhood diverges from fronto-parallel, second-order priors defined on three-
pixel neighborhoods, S(q, {p, r}) = ‖D(p)−2D(q)+D(r)‖1, increases monoton-
ically as the neighborhood diverges from collinearity. Using second-order priors
in stereo matching has a long history since the early 1980s by Grimoson [10]
and Terzopoulos [11]. It has been extended to piecewise second-order by Blake
and Zisserman [12]. [13] argued that it is closer to the human visual system than
first-order priors.

However, effectively applying second-order priors in stereo matching is not
easy. Woodford et al. [14] imposed it by considering triple-cliques, which causes
the energy function to be non-submodular and the corresponding pairwise graph
representation is much more complex than that of the first-order priors. The
QPBO-based fusion move algorithm was adopted to minimize the energy by
considering many pre-computed disparity proposals [15], which makes the ap-
proach complicated and slow.

Assigning each pixel to a tangent plane specified by three parameters becomes
a recent trend of sub-pixel accurate stereo models, which is sometimes termed
as 3D-label stereo [16]. Olsson et al. have proved 3D-label is an implicit way to
impose second-order priors on scalar disparities and leads to submodular pair-
wise potentials for planar proposals [16]. The PatchMatch work [1] demonstrated
that it is an effective way to handle slanted planes thanks to its pixel-wise plane
induced matching cost. Although PatchMatch is a “local” method, it has shown
its ability to handle very challenge cases. [5][17][16] further developed Patch-
Match into global models by adding explicit smoothness terms to regularize the
local neighborhoods of 3D labels, i.e., equations of disparity planes. Despite of
good results achieved, the necessity of parameterizing the scalar disparity by 3D
label is sometimes arguable. Regularization on 3D labels significantly increases
the computational cost.

Under an MRF-like energy minimization framework, smoothness priors are
regularizers to prevent the solution from over-fitting to local minimums of match-
ing cost volume [2]. However, both first and second-order priors are defined pixel-
wise, that is, they are local constraints. Considering the fact that most of stereo
models are non-convex, local constraints are usually too “weak” to prevent the
solution from trapping in bad local minimums. On the contrary, long-range spa-
tial constraints, especially the segment-based priors, have advantages on this
problem by imposing the smoothness constraints in a rigid form [6][7][8][9]. A
basic assumption is that disparity values vary smoothly in homogeneous regions,
i.e., segments. And depth discontinuities are only expected to occur on region
boundaries. A disparity plane is supposed to be sufficient to model disparity
changes in a segment.

In segment-based methods, a disparity plane specified by three parameters
[c1, c2, c3]

�, is usually individually fitted to each region. Given a disparity plane,



114 C. Zhang et al.

the disparity of a pixel [x, y]� is compute by d = c1x+ c2y+ c3. These methods
usually estimate many planes from a set of over-segmented regions according to
some robust initial matches, and then determine the best matched plane for each
region according to an aggregated matching cost defined inside the segment [6].
Robust initial matches are usually obtained by left-right consistency check.

Despite of the excellent accuracy and the relatively low computational cost,
segment-based approaches are often challenged by curved surfaces. The rigidness
is a double-edged sword. On one side it is very helpful to prevent over-fitting,
while on the other side it leads to inaccurate results. Besides, a significant ad-
vantage of segment-based approaches is that they usually have much smaller
number of parameters than pixel-wise 3D-label approaches.

In summary, both pixel-wise second-order priors and segment-based priors
are very effective for stereo matching. Although both of them have limitations,
their advantages are complementary for each other. If they can be considered in
a single model, better results are very likely to be achieved. Our approach, to
the best of our knowledge, is the first one to combine second-order and segment-
based priors in a unified framework.

1.2 Contribution

In this paper we propose a novel segment-based global model, in which scalar
disparities and parameterized disparity surfaces are jointly modeled. Our major
contributions are three-folds:

First, we demonstrate that the second-order smoothness priors can be im-
posed on disparities by a well-defined Laplacian operator constructed on 4- or
8-pixel neighborhoods guided by color cues. Thus, it is able to preserve sharp
discontinuities on edges as well as to encourage collinearity in smooth regions.

Second, unlike previous works where each segment is modeled by a disparity
plane, we model a segment by a quadratic surface. Only with two additional
parameters, we demonstrate that our approach is able to handle curved surfaces,
as well as keeping the advantages of rigidness brought by segments.

Third, we propose an alternated optimization approach for the problem, which
is about an order of magnitude faster than PatchMatch [1], making the proposed
stereo model very practical.

The paper is organized as following. We present the general framework in Sec-
tion 2, and a detailed implementation in Section 3. Experiments on benchmarks
are given in Section 4. Finally, we conclude the paper in Section 5.

2 As-Rigid-As-Possible Stereo

Given a rectified stereo image pair {IL, IR}, the goal of stereo matching is to es-
timate the disparity map u for the reference view IL. Most global stereo methods
can be formulated in an energy minimization framework

E(u) = ES(u) + ED(u) (1)
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Fig. 1. Four types of Laplacian operators. From left to right are L1, L2, L3 and L4.

where ED denotes the matching cost, and ES denotes the smoothness constraints
imposed on a local neighborhood of each pixel or segment. Different stereo mod-
els may use different terms or optimization algorithms. We present our proposal
in the following sections.

2.1 Second-Order Smoothness Priors

Second-order smoothness priors are defined on three-pixel neighborhoods

S(q, {p, r}) = ‖D(p)− 2D(q) +D(r)‖1 (2)

where p, q, r are the three pixels of a 3×1 patch, andD(·) is a disparity functional.
We usually can define four types of 3× 1 patches as shown in Fig. 1.

To avoid penalizing disparity discontinuities aligned with intensive edges, we
add a weight for each 3× 1 patch

w(q, {p, r}) = exp

(
−‖c(p)− 2c(q) + c(r)‖1

γ

)
(3)

S(q, {p, r}) = ‖w(q, {p, r})D(p)− 2w(q, {p, r})D(q) + w(q, {p, r})D(r)‖1 (4)

where ‖.‖1 is L1 normal of a vector, γ is a parameter controlling the significance
of an edge, and c(p) is the color vector of pixel p. To simplify notations, we
will denote them by w(q) and S(q) at the rest of the paper. If the 3 × 1 patch
crosses an edge between two regions, the corresponding weight w(q) is likely
to be zero, as well as S(q). Therefore, this weighting scheme does not punish
discontinuity of disparities on edges. Indeed c(p) − 2c(q) + c(r) is the second
derivative of the image. It is easy to verify that if the disparity function is linear,
i.e., D([x, y]

�
) = ax+ by+ c, the smoothness term will be zero. Fox example, if

q = [x, y]�, p = [x− 1, y]�, r = [x+ 1, y]�, then

S(q) = ‖w(q)(a(x−1)+by+c)−2w(q)(ax+by+c)+w(q)(a(x+1)+by+c)‖1 = 0
(5)

Rewriting Eq. (4) in matrix form, the smoothness energy can be expressed as

ES(u) = u�L�Lu (6)

where L = D − W is the Laplacian matrix [18], W is the weight matrix with
wqp = wqr = w(q, {p, r}), and D is a diagonal matrix with dqq =

∑
iwqi.
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By considering smoothness along multiple directions , we get several Laplacian
matrices Li. The overall problem is a sum of individual quadratic problem.
Each directional Laplacian matrix imposes smoothness along one corresponding
direction, and does not punish disparity discontinuous crossing intensity edges
in any directions.

2.2 As-Rigid-As-Possible Smoothness and Data Cost

Segment-based smoothness prior is an implicit rigid regularization on dispari-
ties, which has been demonstrated to be very robust even in hard cases, e.g.,
autonomous driving stereo estimation [19]. Compared with pixel-wise smooth-
ness priors, it has two major benefits 1) it is more robust to bad local minimum,
and 2) the number of parameters is significantly reduced, which usually leads to
faster models.

In order to exploit such advantages while avoiding over-rigidness, we reparam-
eterize the disparity map u by a set of quadratic disparity surfaces that are fitted
to each segment. In other word, we try to be “as-rigid-as-possible” (thus the name
of the paper) by keeping using the segment-based scheme, while circumventing
over-rigidness by fitting quadratic surfaces instead of planes. Specifically, given
a segment list S of the input view, we define the segment-based data cost term,
which has “built-in” as-rigid-as-possible smoothness, as

ED(Λ) =
∑
s

∑
p∈s

ρ

([
px
py

]
,

[
px −Ds(p− p̄s)

py

])
(7)

where s is a segment, p is a pixel in s, p̄s is the barycenter of s, and Ds([x, y]
�) =

dx2+ey2+ax+by+c is the disparity functional,Λ is a |S|×5 matrix representing
the quadratic coefficients for all the |S| segments, and ρ(p, q) is the commonly
used matching cost [1]

ρ(p, q) = (1− α)min(‖I1(p)− I2(q)‖1, τcol) + αmin(‖∇I1(p)−∇I2(q)‖1, τgrad)
(8)

where parameters τcol and τgrad truncate costs for robustness in occlusion re-
gions. For clarity, we use ρ(p, p−Ds(p)) to denote the ρ in the right hand side
of (7) at the rest of the paper.

Actually, many different types of functionals can be adopted here to model a
curved surface, e.g., the multiple-RBF proposed in [20]. Considering its simplic-
ity, we choose the quadratic functional. If the two second-order parameters d and
e are zero, the functional degenerates to a plane. Thus, it is a natural extension
of the classical plane-fitting approaches [6]. In section 3.1 we will further show
a straightforward way to initialize the functional.

However, the surfaces types that a quadratic functional can model are lim-
ited. To circumvent this problem, we propose to segment images to almost reg-
ular blocks by the super-pixel approach SLIC [21]. As shown in Fig. 2(a-b),
the segmentation obtained by the SLIC is better than mean-shift [22] for our
application. In each small regular grid, a quadratic functional could be a good
approximation to the disparity surface.
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(a) mean-shift [22] (b) SLIC [21] (c) plane-fit [6] (d) after optimization

Fig. 2. Some results of the Middlebury dataset Bowling2 [23]. (a-b) are segmentations.
(c-d) shows the absolute residuals

∑
i |Liu| with respect to disparity map u obtained

by plane-fit[6] and our approach respectively. See text for more details.

2.3 Overall Energy

Combining the pixel-wise second-order smoothness (6) and the matching cost
(7) with built-in “as-rigid-as-possible” smoothness , we obtain the energy

E1(u,Λ) = u�(
∑
i

L�
i Li)u+ λ

∑
s

∑
p∈s

ρ(p, p−Ds(p)) (9)

where u = D(Λ). However, this results in a tight dependence between the two
energy terms, which is difficult to optimize. Inspired by the work [24][5], we
introduce an intermediate term to decouple the tight dependence of the two
subenergies. In summary, the overall energy is defined as

E2(u,Λ) = u�(
∑
i

L�
i Li)u+ θ(u − v)�G(u− v) + λ

∑
s

∑
p∈s

ρ(p, p−Ds(p))

(10)
where v = D(Λ) is the disparity map determined by the surface equations Λ,
G is an identity matrix1, θ is a scalar determining the tightness of the couple
between u and v. When θ increases from 0 to a large value, the two disparity
maps gradually converge to an agreement.

2.4 Interactions between the Two Priors

Without the segment-wise “as-rigid-as-possible” (ARAP) prior, the solution may
easily get trapped in bad local minimums, such as those shown in Fig. 4, be-
cause the pixel-wise second-order prior itself is too flexible to handle this issue.
Without the second-order prior term, the energy is almost the same as tradi-
tional segment-based approaches [6], which usually suffer from misalignments
along segment boundaries. Fig. 2(c) shows the absolute residual

∑
i |Liu| of a

disparity map obtained by plane-fitting. We can easily find strong seams be-
tween regions while inside each region the residual is zero due to the collinearity.
By combining the two priors, the over-flexible issue of the second-order prior is
restricted by the ARAP prior. At the same time, the seams caused by the ARAP

1 Each gii could be a confidence assigned to pixel i if we have that kind of information.
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prior are smoothed out by the second-order prior, as shown in Fig. 2(d). It is
interesting to note that in some regions on the bowling ball non-zero residuals
appear, see the three patches of Fig. 2(d). Since the overall intensities are very
small, we clip three patches and visualize their intensities with a large scaling
factor. The reason is that after the optimization, the disparity functionals be-
come slightly non-linear. Although the second-order prior punishes such changes,
the overall energy decreases due to the smaller data cost. In all, the function-
alities of the two priors are complementary to each other. As demonstrated in
section 4, the two priors work together to generate accurate and seamless dense
correspondences.

2.5 Optimization

The problem is solved by an alternative optimization approach. First, by fixing
u we minimize the energy in (10) with respect to Λ

ED(Λ) = θ(u−D(Λ))�G(u−D(Λ)) + λ
∑
s

∑
p∈s

ρ(p, p−Ds(p)) (11)

where D(Λ) denotes the functional vector. It is easy to verify that, given u, the
optimizations for different segments are independent. Therefore, minimization
can be conducted in parallel. Any derivative-free algorithms can be adopted to
minimize it. We will present a specially designed approach in section 3.2. When
θ is zero, optimizing (11) is similar as the plane-fitting approaches [6].

Second, by fixing D(Λ), that is v, we solve a quadratic programming problem
with respect to u

ES(u) = u�(
∑
i

L�
i Li)u+ θ(u− v)�G(u− v) (12)

which has a closed-form solution by solving the linear equation

(
∑
i

L�
i Li + θG)u = θGv (13)

Since
∑

i L
�
i Li + θG is a sparse positive-semidefinite matrix, the equation can

be efficiently solved by the Cholesky decomposition [25].
The alternated optimization is enclosed by an outer loop, which increases θ

from zero to a large value. Thus, at the beginning, due to the loose couple, i.e.,
θ(u−D(Λ))�G(u − D(Λ)) is small, both the two functionals u and Λ have
freedom to change their values to decrease the total energy. While with the
increase of θ, the couple of them becomes tighter. Finally, u and D(Λ) converge
to an agreement. The whole algorithm is summarized in Algorithm 1.

3 Implementation

In this section, we present some further implementation notes to allow the read-
ers to more easily replicate our method.
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Algorithm 1. As-Rigid-As-Possible Stereo

compute Laplacian matrix Li

set θ to zero
repeat

repeat
minimize Eq. (11) with respect to Λ by a derivative-free algorithm
solve a quadratic programming Eq. (12) by sparse Cholesky decomposition

until converged
increase θ

until converged

3.1 Initialize

A good initialization will make the model converge fast. We adopt a similar
plane-fitting approach as proposed in [6] to estimate a plane equation for each
segment. Our approach consists of three steps:

1. A matching cost volume is computed based on Eq. (8).
2. Some robust matches are obtained by the WTA strategy followed by the

left-right consistency check. The matches are not necessary to be accurate
because the plane equations will further be optimized in the model.

3. A plane equation is estimated by RANSAC for each segment. Six matches
are randomly sampled to estimate the three parameters of a plane equation,
whose cost is then computed by querying pre-computed cost volume [6]. This
process is repeated about 20 times2, and the plane with lowest cost is kept
as the result.

It is noted that, unlike in a traditional RANSAC algorithm where the number
of inliers is used to evaluate the quality of an estimation, we use the matching
cost as the quality measure. The objective of step 3 is coherent with the Eq. (9)
where we try to minimize the matching cost too. For small segments or segments
without initial matches, we just copy equations of the most similar (measured
by mean colors) segment from the local neighborhood.

3.2 Optimize ED

By the initialization step, we have obtained an approximately good equation for
the three 1st-order parameters of each segment, then we randomly assign small
values for the rest two 2nd-order parameters, d and e. As we have mentioned the
analytical derivatives of Eq. (11) is difficult to compute, we adopt a derivative-
free approach to optimize it. The Nelder-Mead simplex algorithm [26] is chosen
because a good property of it is that we are able to customize the initialization

2 Different from previous segment-based methods where the number is usually large
to guarantee a good estimation, we only need a rough estimation because the surface
will be optimized by consecutive steps.
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of the N+1 vertices of the simplex, where N = 5 is the dimension of the variable
being optimized. Starting from the space spanned by the initial simplex, better
solutions are searched by effective rules of Nelder-Mead algorithm.

To minimize ED with respect to a segment, we randomly pick six surface
equations from its neighboring segments to initialize the Nelder-Mead simplex.
This idea is motivated by the PatchMatch approach [1] where good estimations
are propagated among adjacent pixels. The basic assumption is that adjacent
segments are likely to share similar surface equations.

3.3 Optimize ES

For large images, although a directional Lalpacian matrix Li is very sparse, the∑
i L

�
i Li becomes a little dense. This fact causes the Cholesky decomposition

slow. To address the problem, we suggest not to solve the linear equation exactly
as in Eq. (13). Since Eq. (12) is a convex problem, we can use the gradient descent
approach to find a better u(t+1) from a start point instead of getting the best u

u(t+1) = u(t) − τ∇ES (14)

where ∇ES = 2(
∑

i L
�
i Li)u

(t) + 2θG(u(t) − v) is the gradient of ES , and τ is a
step size.

3.4 Post-process

After optimization, we perform a left-right consistency check to label inconsistent
pixels as unknown. The proposed model has a nature way to re-fill unknown
pixels. In the G matrix of Eq. (12), we set the corresponding gii of unknown
pixels to zero, then solve the quadratic programming again. Unknown pixels
will then be filled by disparities of neighboring pixels with large weights in W .
Therefore, disparities of occluded pixels are likely be filled by background instead
of foreground, since the intensity edge between them leads to a small weights in
W . No other post-processing is conducted.

4 Experiments

We tested our approach on the Middlebury stereo benchmark [2]. The experi-
ments are conducted on a PC equipped with an i7-2600 3.40GHz CPU and 8GB
memory. For the parameter setting, we choose {α, τcol, τgrad} = {0.85, 20, 4}.
The gradient feature is a 2-dimensional vector computed by the 3× 3 Sobel op-
erators in horizontal and vertical directions, preceded by a gaussian blur. The
value of α is set relatively large to favor the gradient feature in order to deal
with radiometric difference between left and right frames. On the other hand,
the truncations τcol and τgrad are set to relatively small values to increase the
robustness in occlusion. The weight λ which balances the smoothness and match-
ing cost is set to 2. For the construction of the Laplacian matrix, we choose the



ARAP Stereo under 2nd-Order Smoothness Priors 121

Table 1. Top ranked entries of the Middlebury stereo benchmark evaluated at 0.5 error
threshold. Our method currently is ranked at the third place out of 143 competing
algorithms. In each cell the number denotes bad pixel rate, and subscript denotes
ranking.

Avg. Tsukuba Venus Teddy Cones

Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

1.GC+LSL 3.8 5.042 5.562 14.010 0.663 0.883 5.824 4.201 7.121 12.91 3.775 9.165 10.48

2.PM-Huber 6.0 7.129 7.8010 13.78 1.009 1.4010 7.8012 5.534 9.362 15.95 2.701 7.901 7.771

3.Ours 6.1 7.1711 7.678 16.025 0.642 0.872 6.175 5.523 10.74 15.64 3.003 8.553 8.353

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7.PMBP 14.8 11.944 12.340 17.848 0.857 1.105 6.457 5.605 12.07 15.53 3.484 8.884 9.414

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

9.PatchMatch 22.2 15.063 15.462 20.374 1.0010 1.349 7.7511 5.666 11.86 16.56 3.806 10.27 10.26

same γ = 20 in Eq. (3) for all directions. To segment the input by SLIC [21], we
use {k,m} = {500, 10}, where k is the number of desired superpixels, and m is
a compactness parameter to regularize the shape of each superpixel. All these
parameters are kept constant for the online evaluation.

4.1 Comparisons of Results

Our approach currently is ranked at the third place evaluated at the 0.5 error
threshold. Table 1 details the error rates of top ranked methods. Disparity maps
and bad pixel maps of our method are shown in Fig. 3. Fig. 4 compares results
of our model and three PatchMatch-based models in a textureless region, the
small region under the left arm of the teddy bear. It is clearly seen that Patch-
Match model mislabeled this region. Although the matching cost with slanted
support window defined in PatchMatch is generally very powerful, it still suf-
fers from the lack of regularization limitation in textureless regions, which is a
common problem for local stereo methods. More interestingly, the two global
extensions of PatchMatch (i.e., PM-Huber [5] and PMBP [17]) which have an
explicit smoothness regularization of the 3D label still failed in this region. This
may support our claim that pixel-wise smoothness constraints are somehow too
flexible to prevent the solution from getting trapped in bad local minimums.
In contrast, our method can correctly recover this area due to the “as-rigid-as-
possible” constraints introduced by segment-based priors.

To demonstrate that our model can correctly handle curved surfaces, we show
point clouds generated from our disparity maps, as well as their Phong shaded
versions of the Bowling, Baby, and Cloth [23]. As observed in Fig. 5, our method
successfully recovered the surface of the bowling ball, while PatchMatch intro-
duced two pits on the left side of the ball. An interesting observation is that if
we take a careful look at the left image, the two fault regions of PatchMatch
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(a) Left View (b) Ground Truth (c) Ours (d) Bad Pixels

Fig. 3. Our results on the four online testing images of Middlebury. The error maps
shown in the last column are evaluated at 0.5 error threshold.

(a) PatchMat.[1] (b) PMBP[17] (c) PM-Huber[5] (d) Ours

Fig. 4. Comparison of results in a textureless region. First row is the disparity maps.
Second row is the bad pixel maps.

happen to be shadowed by the standing bottle, which probably results in am-
biguous matching cost in these area. Local methods such as PatchMatch may
probably fail in this situation. Fig. 6 shows more results. For the Baby case, the
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(a) Left view (b) PatchMatch[1] (c) Ours

Fig. 5. Comparison of the reconstructed point cloud between PatchMatch and our
method

(a) Bowling (b) Baby (c) Cloth

Fig. 6. Point clouds and their Phong shaded versions obtained by our model

surface of the round table is correctly recovered, and the shape of the baby’s
body is well preserved too. The Cloth case is more challenging due to the sur-
faces with large curvature. However, our approach still works quite well under
this hard condition.

In Fig. 7, we show more results of our method, compared with PatchMatch.
We implemented the PatchMatch stereo algorithm following the parameters in
the original paper [1]. Weighted median filtering is performed to pixels that
fail to pass the left-right consistency check. For well textured scene such as
the Rock case in the first row, both methods work well and the results are
comparable. For weakly textured scene such as the Flowerpots case in the second
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(a) Left View (b) SLIC[21] (c) PatchMatch[1] (d) Ours

Fig. 7. More results. From the first to the last row are the Rocks, Flowerpots, Lamp-
shade and Plastic datasets, respectively.

row, PatchMatch can still work considerably well due to its powerful matching
cost. But the result is not perfect. It can be clearly seen that the upper-right
most pot is not correctly recovered, while this is not a problem for our method.
For scenes containing almost textureless regions, such as the Lampshade and
Plastic case in the third and last row, disparities computed by PatchMatch
are almost completely erroneous in those regions. In contrast, our method can
naturally handle this problem. These results again support our basic idea that
“as-rigid-as-possible” is effective for stereo matching.

4.2 Running Time

Speaking of running time, our current implementation takes on average 10 sec-
onds for a Middlebury pair. It runs considerably faster than previous methods,
e.g., PatchMatch [1] about 1 minute and PM-Huber [5] about 2 minutes. A key
reason is that we handle segments, whose number (e.g., hundreds or thousands)
is orderly smaller than image pixels. Let us give more details regarding to the
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implementation. First, the iteration number of the outer loop in Algorithm 1 is
not necessarily to be large, since the disparity map usually converges in a few
iterations. We increased θ from 0 to 1 by 10 uniform levels and performs two
iterations of the inner loop for each level. Second, when solving for smoothness
term in Eq. (12), it is not necessary to solve the large sparse linear system in
Eq. (13) exactly. Since the energy in (12) is convex, we only need to perform
a few steps of gradient descent instead. This results a huge acceleration. For
an image of size 375 × 450, solving the sparse linear system requires approxi-
mately 4 seconds on our PC [25]. In contrast, we perform 10 steps of gradient
descent, which only cost 0.1 seconds. Third, when solving for the segment-based
matching cost term, we use the current best solutions of neighboring segments
to initialize the simplex of current segment, which results in a faster convergence
during Nelder-Mead search. We therefore keep the number of max iteration of
Nelder-Mead low, i.e., 50 in out experiments. Finally since each segment can be
optimized individually, we adopted OpenMP [27] for the parallelism.

5 Conclusion

We have presented a novel stereo model which simultaneously incorporates pix-
elwise second-order smoothness priors and the “as-rigid-as-possible” segment-
based priors. The two priors work together to generate seamless, accurate and
robust stereo correspondences. The model can be efficiently optimized by al-
ternating between a quadratic programming and many parallel Nelder-Mead
simplex search of surface equations. Experiments showed that our method can
correctly handle curved surfaces, as well as large textureless regions. Compared
to the powerful PatchMatch stereo algorithm, our method is about an order of
magnitude faster and generally outperforms it.
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