
AVP-Loc: Surround View Localization and Relocalization Based on

HD Vector Map for Automated Valet Parking

Chi Zhang Hao Liu Zhijun Xie Kuiyuan Yang Kun Guo Zhiwei Li

Abstract— Localization is a crucial prerequisite for auto-
mated valet parking, in which a vehicle is required to navigate
itself in a GPS-denied parking lot. Traditional visual localization
methods usually build a feature map and use it for future
localizations. However, the feature map is not robust to changes
in illumination, appearance, and viewing perspective. To deal
with this issue, we need a more stable map. In this paper, we
propose to use the parking lot’s HD vector map directly for
localization. The vector representation is ultimately stable but
brings challenges in data association as well. To this end, we
present a novel data association method to match the surround-
view images with the vector map. In addition, we also propose
a closed-form relocalization strategy by exploiting distinctive
road mark combinations in the vector map. Experiments show
that the proposed method is able to achieve centimeter-level
localization accuracy in a multi-floor parking lot.

I. INTRODUCTION

Automated Vallet Parking (AVP) has become a popular

application in recent years due to the rapid growth of the

autonomous driving industry. In AVP, a vehicle is required

to navigate in GPS-denied parking lots and park itself into

available parking spaces. Accurate localization is a prereq-

uisite for the application. In this paper, we focus on visual-

based localization solutions in this paper since cameras are

cheap and many commercial vehicles have been deployed

with camera sensors.

Traditional visual SLAM methods[1], [2] have achieved

great success in terms of accuracy. They accumulate a sparse

map of local features while simultaneously localize the robot.

After accumulation, the feature map can be used to relocalize

in future runs. Albeit excellent accuracy, local feature-based

approaches suffer from robustness issues. The feature map

is not robust to changes in illumination, appearance, and

viewing perspective. Appearance changes are common in

parking lots, e.g., occupancy statuses of parking slots change,

parked cars change, etc.

To deal with this issue, we need a more stable map. In

this paper, we propose to use the parking lot’s HD vector

map directly for localization. The vector map consists of a

set of vectorized 3D shapes of the semantic traffic elements,

e.g., parking lines, lane lines, arrows, and speed bumps.

Although the vector representation is inherently stable, it

brings us new challenges in data association. The images

and the vector map are heterogeneous data and cannot be

matched directly. To this end, we propose a novel method

to associate the two modalities. The method is based on

the semantic segmentation of the Bird’s Eye View (BEV)

image stitched from four surround-view images. A class-wise

All authors are with DeepMotion Co., Ltd. Beijing, China.

(a) BEV segmentation (b) HD map projection

Fig. 1: The proposed localizer matches BEV segmentations with
the vector map for localization. Some zebra strips in (a) are missed
due to the local over-exposure in the BEV image. The HD vector
map projection in (b) is computed using the localizer’s output pose.

matching strategy is designed to associate the segmentation

with the vector map. Besides localization, we also propose

a relocalization strategy by exploiting the vector map. The

strategy works by searching and matching distinctive road

mark combinations in the map and enables a closed-form

relocalization.

Using a vector map directly for localization provides us

with some collateral advantages. First, the map size is much

smaller without a separate localization layer. Second, map-

ping and localization can be done separately. Mapping can be

made easier by employing stronger sensors such as LiDARs.

The online system can focus solely on localization and

relocalization without worrying about implementing heavy

logic such as submap maintenance, bundle adjustment, or

loop closing in the visual modality. It is also worth noting

that creating a vector map from the local feature map is

cumbersome and sometimes impossible since the feature map

is usually far from complete and is non-intuitive to interact

with.

The contribution of this paper is summarized as follows:

• A heterogeneous data association method that matches

the surround-view images with the HD vector map

based on semantic segmentation.

• A closed-form relocalization strategy by exploting dis-

tinctive road mark combinations distributed among the

vector map.

• A full surround-view based localization system that

achieves centimeter-level accuracy in parking lots with-

out a separate localization layer.



II. RELATED WORK

A large number of visual localization methods have been

proposed in the last decades. Here we review the most related

and classify them into two classes.

A. Feature-Based Approaches

Campos et al.[1] have demonstrated centimeter-level lo-

calization accuracy using ORB feature matching and IMU

fusion. Sons et al.[3] present a surround camera localization

system but using a different descriptor called DIRD[4],

which is more robust to illumination. The method achieves

a localization accuracy within 30cm. Under a similar frame-

work to [1], Xuan et al.[5] propose to detect parking slots

and use them to constrain the sliding window optimiza-

tion further. Albeit excellent accuracy, the local feature-

based approaches suffer from long-term robustness problems

caused by changes of appearance, illumination, and viewing

perspective.

Another branch of related work focuses on extracting

dense pixel-wise features from IPM images. Rehder and

Albrecht[6] maintain an occupancy grid map of road marks,

which are divided into submaps and subsequently used to

perform loop closing. Road marks are detected by threshold-

ing the result from the Difference of Gaussian (DoG) filter.

The authors present the experiments on a toy test track. Since

most road marks are repetitive, leading to high matching

ambiguity, Jeong et al.[7] propose to train random forest trees

to classify only the distinguishable road marks. They present

experiments on an over 4.7km long test route and achieves

a mean error of 1m. To further improve robustness, Qin et

al.[8] propose to use semantic class labels for each IPM pixel.

Such features have demonstrated outstanding performance in

the parking lot scenarios. Relocalization in these approaches

is based on ICP, which requires a reasonably good initial

guess. Therefore the relocalization might converge to a local

minimum depending on the quality of the initial guess. This

problem is not present in our closed-form relocalization

method.

B. Vector Map-Based Approaches

Lu et al.[9] treat the vector map as a set of discrete

3d points and project them to the front camera image.

The localization is then adjusted to minimize the chamfer

distance between the projected point set and the front image’s

edge detection. The overall localization accuracy is 0.6m.

Ranganathan et al.[10] use a map consisting of a set of

discrete and special road marks, e.g., arrows, pedestrian

crossings, and speed limits. These road marks are detected

from the front view IPM image using template matching. The

authors then extract corner points to match with the template

for pose calculation. The limitation lies in the robustness

of the template matching. Since the discrete markings are

typically separated far apart, drift may accumulate to a large

amount before visiting the next discrete marking. The method

achieves an average localization accuracy of 1m. To deal with

the robustness issue above, Wu and Ranganathan[11] extend

their work to include a shadow boosting preprocessing step.

Schreiber et al.[12] propose the match lane lines in the

front image using oriented filters and match the detected

points with the closest projected vector in the map. A v-

disparity[13] image is computed from the stereo depth to deal

with the pitch sensitivity issue during projection. Poggenhans

et al.[14] assemble a local stereo point cloud and detect lane

lines and road curbs from it. They then match the lines and

curbs with the vector map in 3D metric space. Jeong et

al.[15] perform semantic segmentation on the stereo images

and convert the stereo point cloud into a top-view 8bit image,

where each bit represents the presence of a corresponding

semantic class. The 8bit image is then matched with an 8bit

image database preprocessed from the vector map using a

particle filter. The above approaches all rely on the stereo

setup, which provides useful depth information for data

preprocessing. The stereo requirement could be considered

a limitation in our context. Since many indoor parking lot

scenes have large textureless areas and reflective grounds

(Fig. 1b shows a zebra region overwhelmed by highlights),

stereo matching performs poorly in such circumstances.

III. THE LOCALIZER

The proposed localizer uses the BEV image’s semantic

segmentation as the medium to match against the vector map.

The matching process adopts a class-wise matching strategy

so that the process can be accurately modeled. The following

subsections explain the process in detail.

A. Semantic Segmentation on BEV

We construct a BEV image from the four surround fisheye

cameras using Inverse Perspective Mapping. A BEV pixel

[u, v]⊤ and its position in the vehicle coordinates [X,Y, 0]⊤

is related by:

π([u, v]⊤) = [s(u−
w

2
),−s(v −

h

2
), 0]⊤ = [X,Y, 0]⊤ (1)

where w, h are the image width and height. s is the pixel

scale. Each pixel in the BEV occupies a 2cm2 space in

vehicle coordinates. We use a 640×872 image size covering

an ROI of 12.8× 17.44m2 in physical world.

To associate the heterogeneous data between the images

and the vector map, we train a convolutional network that

converts the BEV images into semantic segmentations. The

semantic classes we use here are different types of road

marks in the parking lots, e.g., lane lines, parking lines,

arrows, text, speed bumps, zebra strips, dash segments. In

the label definition, we distinguish horizontal and vertical

parking lines w.r.t. the parking slots’ entrance direction.

The distinguishment gives us better positional constraints in

lateral and longitudinal directions. We employ [16] to train

the network. 5,000 training samples across ten parking lots

were used in our experiments.

B. Vector Map Matching

We now match the BEV image’s semantic segmentation

with the HD vector map. Unlike existing approaches[12],

[8] that match for each feature in the frame to their feature

maps, we do the reverse. We match for each vector segment



(a) Processed segmentation (b) Vector map matches

Fig. 2: (a) A BEV segmentation is preprocessed before matching.
Thin lines are downsampled; Discrete road marks are converted into
contours; Speed bumps are projected to colinear points. (b) Each
green dot represents a vector segment to feature point match.

a semantic feature point in the BEV segmentation. This

naturally results in an evenly distributed set of matches and

reduces the number of matches drastically.

A naive matching strategy is to adopt ICP directly. How-

ever, this will result in matching ambiguity. For example, a

speed bump could be 40cm wide in BEV, but it is represented

as a line segment in the vector map. An arrow is a connected

region in BEV but the vector map stores only its boundary.

Also, a direct ICP would be slow since we need to index

the foreground semantic feature set, which could contain

up to 100,000 points. To this end, we propose a class-wise

matching strategy:

1) For a discrete road mark (e.g., arrow, zebra strip)

represented as a polygon in the map, we match each

segment in the polygon against the contour pixels of

the semantic instance.

2) For a continuous thin road mark (e.g., lane line,

parking line) represented as a polyline in the map, we

down-sample the semantic pixels in these classes by

an order of magnitude and match each vector segment

against down-sampled set.

3) For a continuous thick road mark (e.g., speed bump)

represented as a polyline or a line segment in the map,

we project its contour pixels to the contour set’s major

PCA axis and match each vector segment against this

projected set.

Fig. 2a and 2b illustrates the preprocessed road marks

and the matched results. The purpose of the varied matching

strategies is to provide a better matching model for different

semantic types, as well as to speed up the matching process.

Algorithm 1 illustrates the full process in detail. Three points

are worth noting. First, we divide the vector shapes into

sets of one-meter segments and match the middle points

of these segments to the pixels so that the space can be

covered uniformly. Second, at most one pixel can be matched

with a given one-meter segment. Third and obviously, only

Algorithm 1 BEV segmentation and vector map matching

Input: Vector map M; BEV segmentation S; Three class

label sets CThin, CThick, CDiscrete; Current pose T.

Output: The set of point-to-line matches Ω.

1: Ω = ∅; PThin = ∅; PThick = ∅; PDiscrete = ∅;

2: for each connected component s in S do

3: if s.label ∈ CThin then

4: PDiscrete = PDiscrete ∪ ExtractContour(s)
5: else if s.label ∈ CDiscrete then

6: PThin = PThin ∪ DownSample(s)
7: else if s.label ∈ CThick then

8: c = ExtractContour(s)
9: for each p ∈ c do

10: PThick = PThick ∪ {Project(p, c.MajorPcaAxis)}
11: end for

12: end if

13: end for

14: QThin = BuildQuadtree(PThin)

15: QThick = BuildQuadtree(PThick)

16: QDiscrete = BuildQuadtree(PDiscrete)

17: for each element e in RadiusSearch(M,T, 20m) do

18: for each one-meter segment cici+1 in e do

19: Q∗ = {QThin,QThick,QDiscrete}[e.label]

20: p = NearestNeighborSearch(Q∗, π
−1

(

T
ci+ci+1

2

)

)

21: if dist(p, cici+1) < τ then

22: Ω = Ω ∪ (p, cici+1)
23: end if

24: end for

25: end for

segments and pixels with the same semantic label can be

matched.

C. State Estimation by ESKF

We adopt the Error State Kalman Filter (ESKF)[17] for

state estimation. The localizer aims to estimates the true IMU

state

[p⊤,v⊤,q⊤,ba
⊤,bg

⊤]⊤ (2)

representing respectively its world position, world velocity,

quaternion from body frame to world frame, accelerometer,

and gyroscope biases. The ESKF propagation step is a

standard procedure and is omitted here. Two sources of

information are used for ESKF update.

1) Vector Map Matching. Given a point-to-segment

match (p, cici+1) in pixel coordiantes and world coordinates

respectively, the vector map observation model penalizes the

following point-to-line distance in the world frame

‖(xW − ci)× (xW − ci+1)‖

‖ci − ci+1‖
(3)

where

xW = q⊗ (TI
V x

V ) + p (4)

Here, xW and xV are the matched point expressed in world

coordinates and the vehicle coordinates respectively. TI
V



denotes the transformation from the vehicle frame to the

IMU frame. The vehicle coordinates xV is computed from

the input pixel (pu, pv) using Eq. 1. All point-to-segment

matches form a residual vector by stacking Eq. 3.

2) Wheel Speed. Given a wheel speed vV recorded in

the vehicle frame, and an IMU gyro reading ωωω interpolated

to the same timestamp, the vehicle speed observation model

requires the speed component in the IMU state to agree with

the wheel encoder measurement

q−1 ⊗ v + [ωωω − bg]×t
I
V = RI

V v
V (5)

Both sides of the equation denote the speed of the vehicle

frame’s origin in IMU coordinates. The right-hand side is

obtained from the wheel speed reading, while the left-hand

side is computed from the IMU state vector with lever-arm

compensation imposed. Here tVI shall be interpreted as the

location of the vehicle frame’s origin in the IMU frame.

State correction then follows the standard ESKF update

procedure. Please refer to [17] for derivation details.

IV. RELOCALIZATION

We also exploit the HD vector map for the relocalization

task. The general idea is to determine a set of distinctive

road mark combinations in the vector map so that a road

mark combination detected in the BEV segmentation can be

uniquely matched with its counterpart in the vector map.

A. Distinctive Landmark Selection

Our first step is to determine the set of distinctive land-

marks from the vector map to serve as the relocalization

targets. Here, a landmark refers to a specific combination

of nearby discrete road mark instances. The concept of

“combination” has implicitly introduced for each landmark

a spatial signature, represented by the relative orientations

and distances between the road marks belonging to that

landmark. The spatial signature significantly improves the

distinctiveness and availability of landmarks.

Formally, we represent each discrete road mark instance by

a 3-tuple (pi, θi, ci), which represents its centroid position,

orientation computed from Principle Component Analysis

(PCA), and the class label respectively. Each discrete road

mark is given an index i ∈ N. We represent a landmark

α by a set of road mark indices. A landmark α is said to

be distinctive in radius R if there exists no other similar

landmarks within a that radius. Two landmarks are called

similar if there exists a rigid body transformation that well-

aligns the two sets of 3-tuples. However, this definition

requires solving for the rigid transformation, which will

result in unnecessary computation. To ease similarity testing,

we transform the rigid transformation test into a “spatial

signature” test. Under this test, a landmark α and a landmark

β are similar if and only if

∃γ ∈ P (β), ∀i ∈ {1, . . . , n}, (6)

‖(pαi
− pα1

)− (pγi
− pγ1

)‖ < τp (7)

‖(θαi
− θα1

)− (θγi
− θγ1

)‖ < τθ (8)

cαi
= cγi

(9)

Fig. 3: The distribution of relocalization landmarks (red circles) in
our parking lot map. A landmark is a specific combination of one
to three nearby discrete road marks. Each landmark is assigned as
radius that it is unique in.

where γ is a permutation of β. n is the number of element

indices in each landmark. αi, γi represent the ith element

index in each landmark respectively. τp = 0.2m, τθ = 5◦

are the similarity thresholds. Intuitively, Eq. 6 to 9 mean

whether the relative distances and orientations (i.e. the spatial

signature) within each landmark are similar.

We choose speed bumps, arrows, and dash segments as

the elementary discrete road marks for combination. The

dash segment cannot be used alone but can participate

in augmenting a combination for better distinctiveness. In

practice, we assign at least one and at most three discrete

marks for a landmark. Each landmark is also associated with

a radius it is distinctive in. Fig. 3 shows the distribution of

the landmarks we extract from the HD vector map. Note

although a similarity test in Eq. 6 to 9 involves permutation,

this will not cause any combinatorial explosion problem,

because a landmark contains at most three instances, and

only the instances with the same label need to be permutated.

In practice, at most two instances share the same label in a

real-world landmark, which results in only two permutation

results.

B. Drift Detection

Relocalization mode is triggered only when drift is de-

tected. The idea of drift detection is based on the following

observation. In a correct solution, every semantic feature

point extracted from a BEV image will have a matched

vector segment from the vector map. However, when there

is a drift, many semantic feature points will fail to find their

matched vectors. We call these feature points the orphan

feature points. We choose the ratio of the orphan feature

points as the drift detection metric. If the orphan ratios are

lower than a predefined threshold for a consecutive number

of frames, we are almost certain that drift has occurred.

Formally, the orphan ratio r for one frame is defined as

r =

∑

s∈S
1{d(s,L) > τm}

‖S‖
, d(s,L) = min

l∈L
d(s, l)

(10)

where S is the set of semantic feature points. L is the set

of line semgents that participate in vector map matching.



Fig. 4: Illustration of orphan ratio changes.

Algorithm 2 Landmark-based relocalization

Input: BEV segmentation S; Vector map M; Global land-

mark map LM ;

Output: Relocalized pose T;

1: LS = GenerateLocalLandmarks(S)

2: for landmark ls in landmark candidate set LS do

3: {L1, . . . , Ln} =

RetrieveLandmarks(ls.label signature, LM )
4: for landmark set Li ∈ {L1, . . . , Ln} with i-th spatial

signature do

5: for landmark lj ∈ Li at j-th localization do

6: if SpatialSignatureMatches(ls, lj) then

7: if lj’s circle covers ls’s covariance ellipse then

8: T = ClosedFormReinitialize(ls, lj)

9: T = NonlinearRefine(T,M)

10: end if

11: end if

12: end for

13: end for

14: end for

d(s, l) denotes the point to line segment distance. τm is a

matching distance threshold. To save computation power, we

set S to the down-sampled set of feature points described

in Section III-B. To accelerate the computation of d(s,L),
only the line segments that actually found a closest match

are kept. We create an octree index for the middle points

of these segments so that minl∈L d(s, l) can be computed

by one nearest neighbor search. Fig. 4 illustrates the orphan

ratio change for a simulated drifted trajectory.

C. Closed-form Reinitialization

Relocalization is done by matching local landmark candi-

dates with their counterparts in the vector map.

Local landmark detection. From Section. III-B, we

have already obtained the contours of the discrete elements

for a given BEV segmentation. Each contour represents

an instance of the discrete marks. We then compute each

instance’s 3-tuple representation (pi, θi, ci) in local coordi-

nates using PCA. After that, we form a landmark candidate

set by free combinations of these 3-tuples. Instances of

nonstandard sizes are eliminated from candidate generation.

Local-global landmark matching. Now we are given

a local landmark candidate set Ls, our goal is to return a

correct match between Ls and the global landmark set LM .

Algorithm 2 illustrates the matching process. For a landmark

candidate ls, we ask the map to return the landmarks that

share the same “label signature” with ls. A landmark’s label

signature is defined as the frequency histogram on the three

labels {speed bump, arrow, dash segment}. The returned is

a landmark set list {L1, . . . , Ln}, where they all share the

same label signature but each set Li ∈ {L1, . . . , Ln} has it

own spatial signature. Obviously, at most one set from the list

will match the query ls’s spatial signature. Let us denote the

matched set as L∗ (recall that spatial signature comparison

is performed using Eq. 6 to 9). The remaining problem is

to determine which landmark in L∗ is the real match to ls.

If L∗ only contains one landmark, we are done. Otherwise,

we resort to the distance information to distinguish identical

landmarks.

A naive solution is to choose the landmark that is closest

to the current position estimate. However, since the tracking

has already lost, we cannot trust the state estimator’s output.

To deal with this issue, we maintain a separate Kalman filter

that tracks the odometry using IMU and wheel encoders

only. The filter will be regularly reset when there is no drift

so that its covariance stays small and bounded. When drift

occurs, the filter provides us an ellipse of uncertainty from its

mean and covariance. We use a one-sigma ellipse size in our

experiments. To determine which landmark in L∗ is the real

match to ls, we return the landmark in L∗ whose distinctive

circle completely contains the ellipse of uncertainty. If such

a match does not exist, we continue to other local landmark

proposals. Note that a BEV might contain multiple local

landmark proposals, and it is possible that each of them has

a legal landmark match in the vector map. In this case, any

of these matches can be used for relocalization.

However, the above matching process does not distinguish

similar landmarks across parking lot floors. To deal with this

problem, we need to maintain a z-estimate to reason about

which floor we are currently in. We propose two solutions.

The first solution simply uses the z-estimate from the local-

izer before drift happens. The xy-component of the odometry

trajectory since the drift happens can be used to determine

whether the vehicle has gone upstairs or downstairs, by

matching them roughly with the vector map’s lane topology.

The second solution uses a barometer, which can give a z-

estimate at 1m accuracy.

Closed-form reinitialization. Now we are given two

sets of matched 3-tuples, denoted as {pαi
, θαi

, cαi
} and

{pβi
, θβi

, cβi
}. We want to compute a 3D rigid body trans-

formation that aligns the two sets. Since only 4DoF need

to be estimated, one 3-tuple already suffices to compute the

transformation:

R = AngleAxis(θβi
− θαi

, [0, 0, 1]⊤) (11)

t = pβi
− pαi

(12)

For landmark containing multiple instances, we compute a

separate R, t for each instance, and average them to get the

final reinitialized pose. The accuracy already suffices for the

following nonlinear refinement.

Note however that there is a sign ambiguity in each

instance’s principal direction. To deal with this problem, we

resort to the separate Kalman filter introduced previously in



Camera IMU

Fig. 5: Illustration of the test platform.

Fig. 6: The parking lot vector map used in our experiments. The
parking lot consists of three floors, where each floor is nearly
identical.

this section. The solution is based on the assumption that

the attitude in the filter has drifted less than 90◦. Under this

assumption, we can transform each principal direction to the

world frame and flip it if the direction points oppositely to

its counterpart in the vector map. In practice, the separate

filter is periodically reset so that the assumption will always

hold.

Nonlinear refinement. Using the rough reinitialized pose

from the last step, we then refine it using the point-

to-segment alignment cost in Eq. 3. This is a nonlinear

least square problem that can be solved by the Gauss-

Newton method. We implement the optimization using Ceres

Solve[18].

V. EXPERIMENTS

A. Test Environments

The test vehicle platform consists of four fisheye cameras,

an IMU, and a wheel encoder. Fig. 5 illustrates the sensor

setup. The image stream and semantic segmentation both

run at 10Hz. IMU and wheel encoder run at 100Hz and

50Hz, respectively. The algorithm runs on an onboard Xavier

computer.

We adopt a LiDAR-inertial method[19] to create the point

cloud of the parking lots. We use the interactive tool[20] to

add loop closures manually if needed. The vector elements

are currently annotated manually. How to create the HD

vector map efficiently and automatically is currently out of

the scope of this paper. Using a LiDAR-based approach to

create the HD map is much easier compared to a visual

approach. Note that it is ok for the map to contain drift. The

map needs only to be locally accurate for relative localization

purposes. Fig. 6 shows the parking lot vector map created.

B. Localization Evaluation

We evaluate the localizer’s performance on two indoor

parking lot sequences. The parking lot contains three under-

ground floors B2, B3, and B4. The first sequence is a multi-

floor sequence (Fig. 7b). It starts from a parking slot in B4,

pays a visit to B3, and goes back to starting point in B4.

The sequence sequence is a intra-floor sequence (Fig. 7d).

It starts from a parking slot in B4, makes two loops, and

goes back to the same parking slot. Since the parking lots

used in the experiments are GPS-denied, we opt for three

alternatives to evaluate the localization accuracy.

First, we co-install a LiDAR on the vehicle platform and

compare the BEV trajectory with the trajectory estimated

by an NDT[21] style LiDAR-based localizer. We found that

the NDT algorithm can produce fairly accurate estimates.

Hence we use it as a pseudo ground truth. Fig. 7 provides

an quantitative evaluation. Note that the NDT representation

and the vector map are created from the same underlying

point cloud, making the comparison legitimate. The average

translation error is within 10cm. Most of the rotation errors

are within 3◦. This experiment shows that our surround-view

localizer can achieve a comparable accuracy of a LiDAR

localizer while using a much smaller vector map.

Second, we project the HD vector map onto the BEV

image using the estimated pose and evaluate the distances

between the correspondences from the map projection and

the image content. Fig. 1b shows an example of the vector

map projection. Visually distinguishable features such as

parking spot corners, arrow corners are chosen as evaluation

candidates. When there are no sufficient corner features, we

pick arbitrary lane line points and fallback to the point-to-line

distance metric. Since the scale difference between the BEV

image and the physical world is known, distance measure

on the BEV images serves as a reasonable evaluation metric.

Fig. 8 visualizes the errors from the distance measures. Since

errors in the cameras’ extrinsics are magnified as we get

close to the BEV border, this experiment tends to output a

pessimistically biased evaluation.

Third, we park the vehicle into a parking slot many times

and evaluate the distance between the vehicle and the parking

lines. We compare the distance output by the localizer and

the one measured by tape. The localizer achieves a 2.23cm

accuracy in this experiment, as shown in Fig. 9. Since the

two parking lines around the vehicle contribute very strong

clues for lateral positioning, this experiment tends to output

an optimistically biased evaluation.

Table I summarizes our localization accuraries using the

three evaluation methods above. It also provides a compari-

son with AVP-SLAM[8] in terms of accuracy and map sizes.

Note that [8] uses the third method to evaluate its accuracy.

Under the same evaluation method, both approches have

similar accuracies. The AVP-SLAM’s map size is calculated

from the semantic feature map accumulated from the intra-

floor sequence’s trajectory. The vector map size correspond

to all vector elements in the same floor of that sequence,

which is an order of magnitude smaller than the feature map.



(a) Proposed (green) v.s. odometry (red) on the multi-floor sequence

(b) Proposed (green) v.s. NDT (red) on the multi-floor sequence

(c) Proposed (green) v.s. odometry (red) on the intra-floor sequence

(d) Proposed (green) v.s. NDT (red) on the intra-floor sequence

(e) Translation errors (multi-floor sequence)

(f) Rotation errors (multi-floor sequence)

(g) Translation errors (intra-floor sequence)

(h) Rotation errors (intra-floor sequence)

Fig. 7: Quantitative evaluation using NDT[21] as pseudo ground truth.

(a) Evaluation positions.

(b) Errors in pixels at evaluation positions.

Fig. 8: Localization errors evaluated from vector map projections.

We also perform an ablation study that compares the full

trajectory to the odometry trajectory using IMU and wheel

encoder only. The result is shown in Fig. 7a and Fig. 7c. The

odometry drifted quickly without the constraints from the

vector map. It is worth noting that we have not performed any

calibration on the IMU-vehicle extrinsics. Instead, a rough

hand-measured value is used. We will expect a better (but

Fig. 9: Lateral localization errors evaluated from 20 parking trials.

still drifted) odometry performance if a better calibration is

provided. However, from another perspective, this also shows

that our method is not sensitive to the odometry’s quality,

and is able to turn a rather poor odometry system into a

centimeter-accurate localizer.

C. Relocalization Evaluation

In our experiments, the proposed localizer is able to nav-

igate the vehicle among the multi-floor parking lots without

tracking lost. To evaluate the relocalization performance, we

simulate perturbed poses around a good pose, and test how

well the perturbed poses can be pulled back to their original

pose. Fig. 10a illustrates the relocalization results from three

significantly perturbed poses. The relocalization uses the

speed bump and arrow combination as the landmark. Because

the reinitialization is done in closed-form, the solution will

converge to the same minimum regardless of the perturbation

noise.

We compare our relocalization performance with AVP-

SLAM[8] following the same procedure. AVP-SLAM also



Method Map size Eval.
method

Mean
error(cm)

Max
error(cm)

AVP-SLAM[8] 1.24MB Method-3 2.36 5.23

Ours 0.13MB

Method-1
(lat./lon.)

4.98 / 8.67 31.66 / 37.27

Method-2 11.06 50.09

Method-3 2.23 5.20

TABLE I: Comparison of localization accuracies and map sizes.
Evaluation methods and map size calculation are detailed in Sec-
tion V-B.

(a) Vector map-based closed-form relocalization.

(b) Submap and ICP-based relocalization.

Fig. 10: (a) Our landmark-based relocalization strategy is agnostic
to the perbured pose (red) and always converges to the true
minimum (green), since it is done in closed-form. (b) The submap-
based relocalization is sensitive to the initial pose (red), and might
converge to a local minimum (green), since it uses ICP.

makes use of semantic segmentation. It performs loop closing

(or equivalently, relocalization) by aligning two submaps

using ICP. A submap is an accumulation of nearby seg-

mentation results in 3D. Fig. 10b provides some submap

examples. Currently, we do not have access to AVP-SLAM’s

implementation, but it is not difficult to simulate the submaps

used for relocalization purposes. To do that, we accumulate

the recent BEV segmentations into a semantic point cloud

using the (non-drifted) trajectory from our estimator. The

submap-based relocalization result is shown in Fig. 10b.

Since submap-based relocalization uses ICP, it depends

heavily on the proximity of the initial pose. The approach

would inevitably converge to local minimums from time to

time. In AVP-SLAM, the authors show that AVP-SLAM has

a better relocalization success rate than the visual feature

approach ORB-SLAM2[1], proving that semantic features

have enjoyed better robustness than local features. Hence

we do not repeat the experiment here.

VI. CONCLUSION

We have presented a surround view system that exploits

the parking lot’s vector map directly for localization as well

as for relocalization. At the core, it is a set of novel strategies

to associate heterogeneous data in the pixel level, the instance

level, and the landmark level. Experiments show the system

is able to achieve centimter-level localization accuracy and

to relocalize robustly.

REFERENCES

[1] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D.
Tardos, “Orb-slam3: An accurate open-source library for visual, visual-
inertial and multi-map slam,” arXiv preprint arXiv:2007.11898, 2020.

[2] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[3] M. Sons, M. Lauer, C. G. Keller, and C. Stiller, “Mapping and
localization using surround view,” in 2017 IEEE Intelligent Vehicles

Symposium (IV), pp. 1158–1163, IEEE, 2017.
[4] H. Lategahn, J. Beck, and C. Stiller, “Dird is an illumination robust

descriptor,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings,
pp. 756–761, IEEE, 2014.

[5] X. Shao, L. Zhang, T. Zhang, Y. Shen, H. Li, and Y. Zhou, “A tightly-
coupled semantic slam system with visual, inertial and surround-view
sensors for autonomous indoor parking,” in Proceedings of the 28th

ACM International Conference on Multimedia, pp. 2691–2699, 2020.
[6] E. Rehder and A. Albrecht, “Submap-based slam for road markings,”

in 2014 IEEE intelligent vehicles symposium (IV), pp. 1392–1398,
IEEE, 2014.

[7] J. Jeong, Y. Cho, and A. Kim, “Road-slam: Road marking based
slam with lane-level accuracy,” in 2017 IEEE Intelligent Vehicles

Symposium (IV), pp. 1736–1473, IEEE, 2017.
[8] T. Qin, T. Chen, Y. Chen, and Q. Su, “Avp-slam: Semantic visual

mapping and localization for autonomous vehicles in the parking lot,”
arXiv preprint arXiv:2007.01813, 2020.

[9] Y. Lu, J. Huang, Y.-T. Chen, and B. Heisele, “Monocular localization
in urban environments using road markings,” in 2017 IEEE Intelligent

Vehicles Symposium (IV), pp. 468–474, IEEE, 2017.
[10] A. Ranganathan, D. Ilstrup, and T. Wu, “Light-weight localization

for vehicles using road markings,” in 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 921–927, IEEE,
2013.

[11] T. Wu and A. Ranganathan, “Vehicle localization using road mark-
ings,” in 2012 IEEE Intelligent Vehicles Symposium (IV), pp. 1184–
1190, IEEE, 2012.

[12] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intelli-

gent Vehicles Symposium (IV), pp. 449–454, IEEE, 2013.
[13] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detec-

tion in stereovision on non flat road geometry through” v-disparity”
representation,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2,
pp. 646–651, IEEE, 2002.

[14] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise localization
in high-definition road maps for urban regions,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pp. 2167–2174, IEEE, 2018.

[15] J. Jeong, Y. Cho, and A. Kim, “Hdmi-loc: Exploiting high definition
map image for precise localization via bitwise particle filter,” IEEE

Robotics and Automation Letters, vol. 5, no. 4, pp. 6310–6317, 2020.
[16] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing

network,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 2881–2890, 2017.
[17] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv

preprint arXiv:1711.02508, 2017.
[18] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://

ceres-solver.org.
[19] H. Ye, Y. Chen, and M. Liu, “Tightly coupled 3d lidar inertial

odometry and mapping,” in 2019 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2019.
[20] K. Koide, J. Miura, M. Yokozuka, S. Oishi, and A. Banno, “Interactive

3d graph slam for map correction,” IEEE Robotics and Automation

Letters, vol. 6, no. 1, pp. 40–47, 2020.
[21] M. Magnusson, A. Lilienthal, and T. Duckett, “Scan registration for

autonomous mining vehicles using 3d-ndt,” Journal of Field Robotics,
vol. 24, no. 10, pp. 803–827, 2007.

http://ceres-solver.org
http://ceres-solver.org

	Introduction
	Related Work
	Feature-Based Approaches
	Vector Map-Based Approaches

	The Localizer
	Semantic Segmentation on BEV
	Vector Map Matching
	State Estimation by ESKF

	Relocalization
	Distinctive Landmark Selection
	Drift Detection
	Closed-form Reinitialization

	Experiments
	Test Environments
	Localization Evaluation
	Relocalization Evaluation

	Conclusion
	References

