
DT-Loc: Monocular Visual Localization on HD Vector Map Using

Distance Transforms of 2D Semantic Detections

Chi Zhang Hao Liu Hao Li Kun Guo Kuiyuan Yang Zhiwei Li

Abstract— Localizing a vehicle on a prebuilt HD vector map
is a prerequisite for many autonomous driving applications.
Existing visual localization approaches usually require a sepa-
rate local feature layer to function. The separate localization
layer suffers from the robustness issue inherited from the local
features. Also, it could be difficult to create a feature layer that
aligns perfectly with an existing vector map. In this paper, we
propose a monocular visual localization method that exploits the
vector map directly as the localization layer. The method detects
semantic traffic elements from the images and matches them
with the vectors in the map. To deal with the harmful problem
of false matches, we propose to align the vector map to the
distance transforms of the semantic detections, which enables
a non-explicit and differentiable data association process. The
system is able to achieve centimeter and sub-meter accuracies
in lateral and longitudinal directions, respectively.

I. INTRODUCTION

With the rapid development of the autonomous driving

industry, many high-level applications nowadays come with

a prebuilt HD vector map. A typical HD vector map stores a

set of vectorized 3D traffic elements such as lane lines, traffic

signs, poles, and the lane topology. A few standards have

been proposed to formalize the vector map’s specification,

e.g., OpenDrive[1], Lanelet2[2]. Localization on the prebuilt

vector maps is a crucial prerequisite of these applications.

While GPS can provide centimeter-level accuracy using

Real-Time Kinematic (RTK) technique with the assistance

of nearby ground stations, it suffers from the multi-path

effect and signal blockage in urban canyons, tunnels, or

places with an occluded sky. To realize localization without

temporary interruptions, additional modalities (e.g., LiDAR,

camera) have to be introduced. In this paper, we focus

on the camera-based solutions for their low-cost nature

and the potential for large-scale commercial applications.

Specifically, we focus on the monocular front camera setting

since many vehicles with the Advanced Driver-Assistance

Systems (ADAS) functionalities already have a front camera

installed.

Visual localization has been a long-standing research

topic. A large number of visual SLAM researches has been

proposed[3], [4], where a robot localizes and simultaneously

accumulates a landmark map of visual features during prob-

ing. The accumulated map can then be reused to relocalize

the robot when the probed regions are revisited from future

operations. However, traditional visual approaches suffer

from two issues under the context of autonomous driving.

First is the robustness problem inherited from the local

features. They are not robust in terms of changes of lighting,

All authors are with DeepMotion Co., Ltd. Beijing, China.

appearance, and viewing perspectives. Second, it is difficult

to create a visual feature map that aligns perfectly with an

existing vector map. In general, there will exist non-rigid

differences between the feature layer and the vector layer

which are produced by different algorithms.

To circumvent the above issues, researchers have proposed

to match the visual contents directly with the vector map so

that a separate visual feature layer is not required. Many

of these successful methods[5], [6], [7] are based on a

stereo camera setup so that they could convert what the

cameras see to 3D before matching with the vector map.

Under the monocular setting, the data association process

becomes more challenging. Unlike traditional local feature

matching, the vector map elements are of similar shapes,

nor do they have an easily distinguishable visual descriptor.

It is obvious that incorrect 3D-2D matches are impossible to

correct afterward.

Motivated by this observation, we propose a monocular

visual localization approach, which has the following contri-

butions

• A novel semantic exaction module that regresses traffic

lines and poles directly from a neural network.

• A non-explicit and differentiable data association

method based on the distance transforms of semantic

detections.

• A full 6-DoF monocular visual localization system that

achieves centimeter and sub-meter accuracies in lateral

and longitudinal directions respectively, using only an

HD vector map without a separate localization layer.

II. RELATED WORK

A. Visual Localization Using a Separate Layer

ORB-SLAM3[3] uses ORB descriptor matching for lo-

calization. This approach demonstrated excellent accuracy

but suffers from long-term robustness issues caused by ap-

pearance changes from different illumination conditions and

viewing perspectives. To alleviate the long-term robustness

problem, Stenborg et al.[8] propose to align the SfM point

cloud with semantic class labels to the semantic image

segmentations. Experiments showed an increase of robust-

ness at the price of decreased accuracy. Jeong et al.[9] ex-

ploit discrete markers extracted from the Inverse Perspective

Mapping (IPM) from the front camera for localization and

achieves 1m average accuracy. The use of IPM brings could

easily introduce large modeling errors when the ground is not

level or flat, or when the camera extrinsics are not accurate

enough. Wolcott and Eustice[10] proposed to match a LiDAR



ground reflectivity map with the raw image intensities using

the normalized mutual information. This method’s main

drawback is its sensitivity to dynamic obstacles, or more

generally, when the correlation assumption between the two

modalities breaks. Kim et al.[11] instead match the stereo

depth map against LiDAR point cloud map. The diversity of

the depth gradient is of crucial importance to this method.

B. Visual Localization with Vector Map

Schreiber et al. propose LaneLoc[5]. The authors use

oriented filters to detect sample points from lane lines and

match them with the corresponding polylines in the vector

map. The method relies heavily on the stereo setup for two

purposes. First, it uses the stereo point cloud to lift the

detected 2D samples to 3D for matching. Second, it uses the

stereo depth to compute a V-Disparity[12] image to refine the

pitch, whose accuracy is crucial for match fiding. The method

tracks a 3DoF pose using the Kalman filter. Ranganathan

et al.[13] present a similar idea to LaneLoc[5], but uses

a sparser map consisting of the polygon shapes of the

discrete road marks, such as arrows. Data association is done

through template matching instead of closest match search.

Lu et al.[14] proposed to associate the road vector map

with edge detection results. However, the detected edges are

usually cluttered by many other scene objects, which affects

robustness. The authors therefore use epipolar relations from

SURF features to further constrain the problem.

Poggenhans et al.[6] detect road markings and curbs from

the top view image of the stereo point cloud, and match

the detected markings with their counterparts in the vector

map under the Unscented Kalman Filter framework. Jeong

et al.[7] represent the vector map as 8bit image patches

from the top view, where each bit represents the presence

of an element class for a given pixel. Localization is done

by matching the online 8bit patch to the map patches using

a bitwise particle filter. Both approaches require a stereo

camera setup. The stereo point cloud enables them to create

a top-view image with metric scale, so that map matching

can be done in metric space.

Xiao et al.[15] propose to use RANSAC[16] to match

vectorized map elements between 3D and 2D. However, this

matching method is associated with an inherent limitation.

RANSAC works by the assumption that there are enough

inliers in the input so that a randomly generated valid

correspondence will gain bigger support and eventually wins.

However, under the 3D map matching context, the number of

semantic features is relatively small (and will be inevitably

subject to occlusion, making the candidate set even smaller).

The RANSAC assumption might no longer hold. Localiza-

tion will quickly converge to bad local minimums when the

assumption breaks. We use the non-explicit matching scheme

in Section III-B to deal with this problem.

III. APPROACH

Our localizer adopts a factor-graph optimization approach.

The graph is a small sliding window of the recent image

frames. The system consumes the distance transforms, HD

Semantic
Extraction

DT
Computation

Sliding Window
Optimization

Submap
Query

HD Map

State
Prediction

IMUWheel
100Hz
R, t

Front Image

Traffic lines
and poles

DT Image

Vector Submap

R∗, t∗

R, t

IMU

Fig. 1: Overview of the proposed localizer.

vector map, IMU stream, wheel encoder readings, and out-

puts optimized poses. Fig. 1 provides an overview of the

pipeline.

A. Semantic Detection

Our goal is to detect traffic lines (e.g., lane lines, stop lines,

road curbs) and poles represented respectively as polylines

and line segments from the front view images. We fail to find

existing methods that detect vectorized traffic lines and poles

in a unified framework. Therefore we propose our own. We

start with the discussion for traffic line detection and then

model pole detection as a special case.

Traffic line detection. The traffic line detection problem

has attracted a large amount of research. Among these

approaches, some assumes fixed number of lane lines[17],

some represents the line as x = f(y) the x coordinate as a

function of y coordinate[18], [19]. This representation cannot

deal with nearly horizontal lines such as stop lines or even

the regular lane lines observed when the vehicle is taking a

turn. We propose a novel traffic line detector to deal with

both problems. The detector adopts the SSD[20] detection

framework. However, instead of regressing bounding boxes,

the method regresses polylines.

Traffic line representation. we represent a traffic line as n

sample points evenly spread among itself. On one hand, the

number of sample points should not be too large to cause

difficulty in learning the regressions. On the other hand, the

sample count should not be too small to lose the flexibility

to model curved shapes. We set n = 9 by cross-validation.

Anchor design and prediction. The proposed detector uses

the same framework as SSD. But instead of using bounding

boxes as anchors, we replace them with oriented straight

segments. Specifically, each feature map position is associ-

ated with an anchor set, as shown in Fig. 2a. Each anchor

is a line segment (θi, si) representing its orientation and

length, whose centroid coincides with the anchor position.

For each anchor, we regress C class labels and 2n offsets

w.r.t. the anchor position. The anchor position plus the 2n
offsets give the n sample points’ final output positions. The

anchor set we use includes eight different orientations, where

each orientation has three different lengths.

Training loss. Similar to SSD[20], the training objective

is a sum of a confidence loss and a localizaiton loss. The

condidence loss is a softmax loss over multiple classes,

same to that in [20]. Different to SSD, our localization loss

is the is defined as the Euclidian distance between the n



(a) Traffic line anchors (b) Pole anchors

Fig. 2: Illustration of the anchors used in our semantic detector.

predicated sample points and the ground truth sample points,

where each point is stored in a normalized image coordiantes

[0, 1] × [0, 1]. To determine whether an anchor segment

matches (θi, si) with a ground truth traffic line lj , first we

converts the 2-tuple (θi, si) into the n-point representation,

denoted as li. We then compute the bidirectional distance

between the two polylines li, lj :

d(li, lj) =
∑

p∈li

d(p, lj) +
∑

q∈lj

d(q, li) (1)

where p, q are the sample points, d(p, lj) is the point-to-

polyline distance, i.e. distance between p and its closest point

in lj . d(p, lj) has the same meaning. Eq. 1 is also used for

non-maximum supression.

Pole detection. Few literature has directly addressed pole

detection from monocular images, perhaps due to its rather

specific use case. Here we define the detected poles as 2D

line segments. A careful look will reveal that this is a special

case of the traffic line detector we just proposed. However,

there are three customizations. First, instead of using an

anchor set with many orientations, only the vertical direction

is needed. Second, instead of regressing n = 9 sample points,

we only need to regress n = 2 sample points corresponding

to the top and bottom vertices of the pole. Third, since poles

at different depths could appear in a large range of sizes, we

introduce more length scales for the pole anchors. Fig. 2b

visualizes three scales of the pole anchors on the same feature

map.

Training. The two tasks are trained together using a

ResNet18[21] backbone network consisting of two heads,

one for traffic lines, the other for poles. The traffic line

head is trained with the CurveLane-NAS[22] datasets. The

pole head is trained with a custom dataset consisting of

10,000 images, collected from the test highway and tunnel

environments in Section IV. We use the 512×384 image size

for network input. The detector runs at 37Hz and 11Hz on

1080Ti and Xavier respectively. Fig. 3 shows some sample

detections.

Discussion. Instead of regressing the traffic lines and

poles directly, we also test the alternative approach based

on instance segmentation[23]. The method produces a lane

line segmentation mask and use mean-shift clustering to

obtain the traffic line instances. A polyline is then fitted to

each instance. Both [23] and the proposed detector achieve

comparable accuracy and recall, but in general the regression

approach is faster than the segmentation one, as shown in

1080Ti Xavier

Proposed 37fps 11fps
Neven et al.[23] 20fps 8fps

TABLE I: Speed comparison between our regression-based method
and the segmentation-based approach [23]. [23] contains a mean-
shift post-processing step in CPU, whose runtime is not affected
by the GPU device. This explains the non-proportional speed ratio
on the two devices.

(a) Traffic line and pole detections.

(b) Distance transforms.

Fig. 3: Example semantic detections and distance transforms. (a)
Our traffic line representation allows us to detect nearly horizontal
lines. (b) In actual implementation, the distance transforms from
traffic lines and poles are stored separately to avoid them from
interfering with each other.

Table I. Note that the tested alternative[23] only produces

lane lines, while ours outputs traffic lines and poles simul-

taneously.

B. Non-explicit Vector Map Matching

Given a set of detected poles and traffic lines, our goal is

to match these semantic elements with their counterparts in

the 3D vector map so that constraints could be built for the

to-be-estimated state. First, we need to determine the set of

candidate 3D vectors for matching. We use the pose T from

the last estimate to retrieve the set of 3D elements within

100m in front of the vehicle.

Now given the candidate set of 3D vectors and 2D vectors,

a straightforward way to match them is to project each 3D

vector to the image and associate the projection with its

closest 2D neighbor. However, missed positives and false

alarms occur from time to time. It is obvious that mistakes

in the resulted association are impossible to correct. Xiao

et al.[15] propose to adopt RANSAC to alleviate the false

match issue. Although this might work for common cases,

it still fails regularly due to the following reason. At the

core of RANSAC algorithm is the assumption that an inlier

will get better support (consensus) than an outlier. This

assumption often breaks in the vector map matching scenario,

as the detected elements could be very sparse. When only a

minimal candidate set is available and the set contains false

detections, the method is guaranteed to fail because there is

no inlier available, but RANSAC is not able to distinguish

this situation.



We propose to perform non-explicit data association to

deal with the above problem. The non-explicit behavior is

realized through the use of distance transforms (DT) of the

semantic detections. Each pixel in the DT image represents

the distance between the pixel and its closest 2D vector.

Fig. 3 illustrates an example. We employ a breadth-first

search approach to compute the DT image D. Pixels that

overlapped with the detected polylines are seeded with a zero

distance. The seeded set then expands one pixel distance at

a time until a maximum threshold τDT is reached. We set

τDT to 5% of the image width in our experiments. After

DT computation, an intensity valley will form around each

semantic detection. The matching problem now converts to

the alignment problem from the 3D vectors to the DT image.

Each semantic detection now attracts the projection of its

potential match to the basin of its valley. To conduct actual

alignment, we generate evenly spaced (i.e., 1m) sample

points from the 3D vectors {X1, . . . ,Xm}, and project them

to the image. We seek for a pose-induced projection that

minimizes the sum of DT distances of the projected points

m
∑

j=1

D(x(Xj ,T)) (2)

The sum of distances is naturally differentiable w.r.t. to the

pose,

∂D

∂T
=

∂D

∂x

∂x

∂T
= ∇D(x)⊤

∂x

∂T
(3)

where ∇D(x) is the gradient of the DT image at pixel

localization x. The alignment process can then be solved in

an optimization framework. The DT-based association also

provides a collateral advantage: it enables us to naturally

deal with curved lane lines. In explicit matching, even two

curved polylines are correctly associated at the instance level,

an ambiguity still exists on how the small segments in the

polylines correspond to each other.

C. State Estimation

We adaopt a sliding window optimization apparoch for

state estimation. The sliding window consists of N states

corresponding to the recent N image frames. Each state is

represented as

xi = [p⊤
i v⊤

i q⊤
i ba

⊤

i bg
⊤

i
]⊤, i ∈ [1, . . . , N ] (4)

where the five components correspond respectively to the

IMU position in world frame, the IMU velocity in world

frame, the quaternion form IMU body frame to world frame,

and the accelerometer and gyroscope biases. N ranges from

2 to 5 inpractice. We optimize for the following objective in

the sliding window

min
x1,...,xN

{ N
∑

i=1

(

‖rDT(xi)‖
2 + ‖rRP(xi)‖

2 + ‖rWS(xi)‖
2

)

+
N−1
∑

i=1

‖rIP(xi,xi+1)‖
2
Σ

}

(5)

where the abbreviations DT, WS, RP, and IP stand for

Distance-Transform, Road-Plane, Wheel-Speed and IMU-

Preintegration respectively.

1) The distance transform factor. This factor seeks to

align the 3D vectors to the distace transforms of the 2D

detections

rDT(xi) = [rDT(xi, X1), . . . , rDT(xi, Xm)]⊤ (6)

where

rDT(xi, Xj) = Di(π(T
C
I (qi ⊗Xj + pi))) (7)

Here, Di denotes the distance transform of the ith image

frame; {Xj}
m
j=1 is the set of 3D points sampled from the set

of the elements retrieved from the map query stage described

in section III-B. Each 3D polyline or line segment is typically

sampled with a 1m step size; The symbol ⊗ denotes a

quaternion product with a 3D point; π represents the camera

projection operator using the pin-hole model. TC
I denotes the

transformation from the IMU frame to the camera frame.

2) The road plane factor. We define the the vehicle

frame’s origin to be the rear axle’s projection onto the ground

plane. The road plane factor wants the vehicle frame’s origin

to always lie on the ground plane from the HD vector map

rRP(xi) = (qi ⊗ tIV + pi − ci)
⊤ni (8)

where (ci,ni) are respectively the pivot point and the normal

of the HD map road plane in world coordinates. qi⊗tIV +pi

is the vehicle frame’s origin in world coordinates, tranferred

through the IMU pose and the IMU-vehicle calibration.

3) The wheel speed factor. The wheel speed factor seeks

for an agreement on the vehicle frame’s origin’s velocity,

observed respectively from the IMU and the wheel encoders

rWS(xi) = q−1

i ⊗ vi + [ωi − bgi
]×t

I
V (9)

−RI
V v

V
i (10)

where vV
i is the vehicle origin’s velocity in the vehicle frame

measured by the wheel encoders. RI
V v

V
i is the same velocity

but transferred into the IMU frame. The right-hand side of

Eq. 9 also expresses the vehicle origin’s velocity in the IMU

frame, but the velocity is measured from the IMU instead of

the wheel encoders. q−1

i ⊗vi is the IMU origin’s velocity in

the IMU frame. [ωi−bgi
]×t

I
V is the lever-arm compensation

for the vehicle’s origin under the rotating IMU frame, where

ωi − bgi
denotes the measured angular velocity.

4) The IMU preintegration factor. The IMU preinte-

gration factor wants the two states associated to two ad-

jacent image frames to agree with the IMU measurements

accumulated between these two image frames. The factor is

expressed as

rIP(xi,xj) = ∆xij −∆x̂ij (11)

where

∆x̂ij , [αααi
j

⊤
βββi
j

⊤
γγγi
j

⊤
0⊤ 0⊤]⊤ (12)

is the IMU preintegration[24] between frame i and frame j,

integrated from the IMU measurements. The preintegration



can be interpretated as the nominal state evaluated at the end

of the preintegration process, whose kinematics is defined as

α̇ααi
t = βββi

t (13)

β̇ββ
i

t = Ri
t(ât − bat − na) (14)

γ̇γγi
t =

1

2
γγγi
t ⊗ (ω̂ωωt − bgt

− ng) (15)

where ât,na, ω̂ωωt,ng are respectively the readings and noises

from the accelerometer and gyroscope. Here, αααi
t,βββ

i
t, γγγ

i
t are

respectively the pseudo changes of position, velocity, and

rotation betwen the virtual frame at time t and frame i. The

pseudo changes are deliberatedly defined in a way such that

the changes do not depend on the initial IMU states and the

gravity, so that changes of IMU states during optimization

will not cause the expensive integration operation to be

recomputed. Note that for the rotational component, the

pseudo change and the physical change are identical. The

preintegration process starts from a zero state at frame i and

ends at frame j. The Σ matrix in Eq. 5 is the 15 × 15
covariance matrix associated to the error state at the end of

the preintegration process.

So far, we know ∆x̂ij is the preintegration computed from

the IMU measurements. Now,

∆xij ,













R⊤
i (pj − pi −

1

2
g∆t2 − vi∆t)

R⊤
i (vj − g∆t− vi)

q−1

i ⊗ qj

baj − bai

bgj
− bgi













(16)

is also the preintegration, but computed from the states

xi and xj to be optimized. The IMU preintegration factor

wants to minimize the difference between the preintegrations

computed from the two paths. Please refer to [24] for the

derivation details.

Eq. 5 is a nonlinear least square problem and can be

optimized by the Gauss-Newton method. We employ Ceres

Solver[25] for the implementation.

D. State Predictor

The optimized poses output by the sliding window op-

timizer are not real-time poses. They are delayed by the

elapsed time of semantic detection and optimization. To

output real-time poses, we maintain a state predictor in a

separate thread. The state predictor maintains a base state

and the IMU stream that arrives after the base state. The

real-time poses are integrated from the IMU stream using

the base state as the initial condition. The base state is

regularly updated when an optimized pose is produced from

the sliding window optimizer. In our system, the sliding

window optimizer runs at 10Hz, while the state predictor

is triggered by a 100Hz timer.

IV. EXPERIMENTS

Our test vehicle platform consists of a front camera, an

IMU, and the wheel encoder, which run at 10Hz, 100Hz, and

50Hz, respectively. A NovAtel PwrPak7D-E1 INS module

is installed side to obtain a pseudo ground truth trajectory,

Fig. 4: The test platform used in our experiments.

(a) G7 Highway (b) Tunnel

Fig. 5: The two HD vector maps used in our experiments.

which can achieve < 10cm accuracy with RTK enabled.

Fig. 4 shows our test platform. The LiDAR is not used in our

experiments. The program runs on an Nvidia Xavier com-

puter with an 8-core ARM CPU, and a 512-core Volta GPU,

and 32GB memory. We test our methods on both the highway

and the tunnel environments. The HD map vector maps are

provided by a third-party map provider, geo-referenced in

WGS84 coordinates, as shown in Fig. 5. The vector map

contains abundant classes of elements, while currently, only

lane lines and poles are used in our experiments. The map

is converted to local ENU (East-North-Up) coordinates for

distance transform alignment.

A. Quantitative Evaluation

We test our method on two sequences. The first sequence

makes a round trip on the 11km highway, totaling a distance

of 22km. The second sequence navigates through four con-

secutive long tunnels, totaling 1.2km. The trajectory output

from the NovAtel INS module is used as ground truth.

Fig. 6 shows the quantitative evaluation results. Not that the

localizer does not use the GPS during the whole ride except

for initialization.

For the highway sequence, the lateral and longitudinal

errors are within 10cm and 20cm, respectively, for the

majority of cases. Some interesting cases worth elaboration.

The first few frames in Fig. 6c shows large errors on the

xy-plane. This is caused by the rough initial position given.

In frame 5000 to 5700, there exists a roughly one-meter

longitudinal error. This is caused by a temporal traffic jam, as

shown in Fig. 7a. The car has only moved for a short distance

during this period, and the only longitudinal clues are three

very distant poles. Unlike close poles, distant poles are

less effective in constraining longitudinal position since, for

faraway poles (e.g., 100m away), a longitudinal difference

(e.g., 1m) in 3D only causes a limited difference (e.g., 1px)

in image coordinates.



(a) The highway sequence.

(b) The tunnel sequence.

(c) Translation errors on the highway sequence.

(d) Rotation errors on the highway sequence.

(e) Translation errors on the tunnel sequence.

(f) Rotation errors on the tunnel sequence.

Fig. 6: A quantitative evaluation of the proposed localizer on both highway and tunnel environments. The RTK trajectory from the
NovAtel INS module is used as ground truth.

For the tunnel sequence, the lateral errors are within

10cm for most cases. However, the longitudinal errors are

much larger, which are within 60cm for most cases. This

is caused by the lack of longitudinal clues (i.e. poles)

inside the tunnels. Errors in roll and pitch also tend to be

larger compared to the highway sequence. We suspect the

reason lies in the ground truth trajectory. Since the GPS

is blocked under the consecutive tunnels, and the tunnels

contain many up-hill and down-hill segments during the

course, the ground trajectory might also accumulate attitude

drift. The hypothesis is supported by vector map projection

induced by the GNSS pose in Fig. 8, which shows visible

pitch error.

B. Qualitative Evaluation

To visualize the solution quality more intuitively, we

project the HD vector map onto the image using the lo-

calizer’s output pose. Fig. 7 illustrates a few examples

across various scenarios. In the test sequences, the width

(a) Traffic jam (b) First left turn (c) Second left turn

Fig. 7: Frames 5300, 5700, and 6000 from the highway sequence.
First row is the semantic detections. Second row is the vector map
projections.

of the lane lines and the dash segments is 15cm. If a lane

line’s projection lies inside the 15cm road mark, it means

the projection is offset by at most 7.5cm. Our projections

lie within the 15cm wide road marks in most cases. An

interesting phenomenon is that poles at the right image

boundary seem to have larger misalignments than others. The



(a) NovAtel INS module (b) Ours

Fig. 8: Comparison of vector map projections between NovAtel
INS module and ours. Although NovAtel’s trajectories are used as
ground truth, they are not always accurate when GPS is blocked. (a)
Both projctions look similar in highway. (b) NovAtel’s projection
has larger pitch error in tunnel.

following reason could cause this phenomenon. A 1◦ yaw

error could result in a 30 to 70-pixel shift in our 1920px-

wide image. The closer the pole, the larger the shift. Since

the vehicle is driving on the right side of the road, we get

closer poles from the right border than from the left. Hence

yaw errors are more visually magnified on the right image

border.

We also compare our approach to the start-of-the-art

visual-inertial method ORB-SLAM3[3]. However, it is dif-

ficult to create an ORB feature map that aligns well with

an existing vector map since there is no obvious method

to associate between sparse features and vectors directly,

and there will exist non-rigid differences between the maps.

Therefore, we opt for a qualitative comparison. Specifically,

we run ORB-SLAM3 on the two test sequences and compare

the trajectories to ours. Since the output trajectories are in

their own local coordinates, we manually align them to the

map. The aligned trajectories are shown as purple in Fig. 6a

and Fig. 6b. The trajectories show large orientation drift and

scale drift. Note that due to experiment restriction, this is

by no means a fair comparison, but it shows intuitively how

the vector map could be exploited to turn a drifted odometry

into a map-aligned trajectory.

C. Ablation Study

We perform an ablation study to access the contributions

from poles and lane lines respectively.

Fig. 9a shows the errors of the pole-only trajectory when

lane lines are removed. The result error curve demonstrates

similar statistics to the full method in Fig. 6c. The lateral

median error becomes larger, while the longitudinal error

stays relatively the same. Albeit a slightly worse lateral

error, the experiment implies that poles alone provide enough

constraints for a good enough localization in both lateral and

longitudinal directions. During frame 5000 to 5700 traffic

jam, the pole-only setting demonstrates the same longitudinal

drift behavior to the full method. This is expected since few

lane lines can be observed during this same, making full

method effectively degenerate to the pole-only setting during

these frames.

Fig. 9b shows the trajectory errors of the lane line-only

trajectory when poles are disabled. The trajectory maintains

excellent lateral accuracy but demonstrates considerable lon-

gitudinal drift. The reason is that a longitudinal drift on a

straight road does not affect the lane lines’ appearance in

the front image. As time goes by, the small drifts accumulate

into a large drift in the longitudinal direction. At frame 5700,

there exists a sudden peak in the lateral direction. This is

caused by the vehicle making its first left turn from the main

road into the u-turn ramp, which effectively converts the

longitudinal error into the lateral error. The drift continues

to increase by suddenly drops to zero at frame 6000. This

is when the vehicle is making the second left turn to merge

back into the main road. At this moment, the main road’s

lane lines all appear horizontally in the image, providing

strong longitudinal constraints, which brings the system’s

longitudinal error back to zero.

In summary, the lane line-only setting has better lateral

accuracy than the pole-only setting but has poor longitudinal

accuracy. The pole-only solution has slightly worse lateral

accuracy but good longitudinal accuracy. Fig. 9a and Fig. 9b

also compares the vector map’s projections on the u-turn

ramp. Albeit having an unknown drift, the lane line-only

setting shows a well-aligned vector map, while the pole-only

solution shows laterally drifted lane lines.

D. Runtime

The semantic detection module can run at slightly more

than 10Hz on GPU, while the distance transform compu-

tation and sliding window optimization combined can run

greater than 10Hz on CPU. Sicne the optimization is trig-

gered when a new DT image is received, and the front image

stream is configured to 10Hz, the optimization thread runs

at 10Hz. Since the CPU and the GPU tasks are pipelined,

the optimized poses are at least one frame late. These late

poses are used to update the base state in the state predictor

introduced in Section III-D, which then outputs real-time

fresh poses by integrating the IMU measurements starting

from the base state.

V. CONCLUSION

We have a presented monocular visual localization system

that exploits the HD vector map directly as the localization

target. The system does not require explicit data association

but instead makes use of distance transforms of seman-

tic detections to enable a non-explicit differentiable data

matching process. The system is robust due to the semantic

features used and is able to achieve centimeter-level and

submeter-level accuray in lateral and logitudinal directions

respectively. A future work is to extend the method to multi-

view camera systems and to more complex urban scenes.

REFERENCES

[1] M. Dupuis, M. Strobl, and H. Grezlikowski, “Opendrive 2010 and
beyond–status and future of the de facto standard for the description of
road networks,” in Proc. of the Driving Simulation Conference Europe,
pp. 231–242, 2010.



(a) Pole-only setting.

(b) Lane line-only setting.

Fig. 9: An ablation study by removing lane lines and poles respectively from the vector map. The satellite images show the data segment
between frame 5000 to 7000, where the vehicle encountered a traffic jam and then made a large U-turn. (a) The pole-only setting sees
degradation in both lateral and longitudinal accuracies but still manage to achieve < 30cm errors for most cases. (b) The lane line-only
setting maintains an excellent lateral accuracy but degrades significantly in the longitudinal direction. Please see the text for detailed
elaboration.

[2] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann,
F. Kuhnt, and M. Mayr, “Lanelet2: A high-definition map framework
for the future of automated driving,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), pp. 1672–
1679, IEEE, 2018.

[3] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D.
Tardos, “Orb-slam3: An accurate open-source library for visual, visual-
inertial and multi-map slam,” arXiv preprint arXiv:2007.11898, 2020.

[4] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference

on robotics and automation (ICRA), pp. 15–22, IEEE, 2014.

[5] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intelli-

gent Vehicles Symposium (IV), pp. 449–454, IEEE, 2013.

[6] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise localization
in high-definition road maps for urban regions,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pp. 2167–2174, IEEE, 2018.

[7] J. Jeong, Y. Cho, and A. Kim, “Hdmi-loc: Exploiting high definition
map image for precise localization via bitwise particle filter,” IEEE

Robotics and Automation Letters, vol. 5, no. 4, pp. 6310–6317, 2020.

[8] E. Stenborg, C. Toft, and L. Hammarstrand, “Long-term visual local-
ization using semantically segmented images,” in 2018 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 6484–
6490, IEEE, 2018.

[9] J. Jeong, Y. Cho, and A. Kim, “Road-slam: Road marking based
slam with lane-level accuracy,” in 2017 IEEE Intelligent Vehicles

Symposium (IV), pp. 1736–1473, IEEE, 2017.

[10] R. W. Wolcott and R. M. Eustice, “Visual localization within lidar
maps for automated urban driving,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 176–183, IEEE,
2014.

[11] Y. Kim, J. Jeong, and A. Kim, “Stereo camera localization in 3d
lidar maps,” in 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 1–9, IEEE, 2018.

[12] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detec-
tion in stereovision on non flat road geometry through” v-disparity”
representation,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2,
pp. 646–651, IEEE, 2002.

[13] A. Ranganathan, D. Ilstrup, and T. Wu, “Light-weight localization
for vehicles using road markings,” in 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 921–927, IEEE,
2013.

[14] Y. Lu, J. Huang, Y.-T. Chen, and B. Heisele, “Monocular localization
in urban environments using road markings,” in 2017 IEEE Intelligent

Vehicles Symposium (IV), pp. 468–474, IEEE, 2017.

[15] Z. Xiao, D. Yang, T. Wen, K. Jiang, and R. Yan, “Monocular
localization with vector hd map (mlvhm): A low-cost method for
commercial ivs,” Sensors, vol. 20, no. 7, p. 1870, 2020.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[17] J. Kim and C. Park, “End-to-end ego lane estimation based on
sequential transfer learning for self-driving cars,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, pp. 30–38, 2017.
[18] J. Philion, “Fastdraw: Addressing the long tail of lane detection

by adapting a sequential prediction network,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11582–11591, 2019.

[19] X. Li, J. Li, X. Hu, and J. Yang, “Line-cnn: End-to-end traffic line
detection with line proposal unit,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 1, pp. 248–258, 2019.
[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,

and A. C. Berg, “Ssd: Single shot multibox detector,” in European

conference on computer vision, pp. 21–37, Springer, 2016.
[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 770–778, 2016.
[22] Z. Li, “Curvelane-nas: Unifying lane-sensitive architecture search and

adaptive point blending,” 2020.
[23] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and

L. Van Gool, “Towards end-to-end lane detection: an instance segmen-
tation approach,” in 2018 IEEE intelligent vehicles symposium (IV),
pp. 286–291, IEEE, 2018.

[24] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[25] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://

ceres-solver.org.

http://ceres-solver.org
http://ceres-solver.org

	Introduction
	Related Work
	Visual Localization Using a Separate Layer
	Visual Localization with Vector Map

	Approach
	Semantic Detection
	Non-explicit Vector Map Matching
	State Estimation
	State Predictor

	Experiments
	Quantitative Evaluation
	Qualitative Evaluation
	Ablation Study
	Runtime

	Conclusion
	References

