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Abstract— Many autonomous driving applications nowadays
come along with a prebuilt vector map for routing and planning
purposes. In order to localize on this map, traditional LiDAR
localization methods usually require a separate localization
layer to function. On one hand, the separate layer occupies large
storage and is not convenient to update. On the other hand, the
potential of the vector map itself has not been fully exploited by
existing methods. In this paper, we present a LiDAR localization
system that leverages the vector map directly as the localization
layer. A semantic extraction module is developed to match
the heterogeneous data between LiDAR measurements and
the 3D vector elements. A local map maintenance module is
introduced to keep the system function robustly when there are
not enough vector matches. The system adopts an optimization-
based framework and infers 6-DOF poses. Experiments show
that the proposed system is able to achieve centimeter accuracy
robustly in both highway and urban environments, without a
separate localization layer.

I. INTRODUCTION

Accurate vehicle localization is a fundamental prerequi-

site for high-level autonomous driving. In many modern

autonomous driving applications, the task of localization is

to compute a pose on a predefined high-definition (HD)

vector map so that a planning module can consume this pose

and output real-time planned trajectories on this vector map.

Typically, an HD vector map consists of traffic elements like

lanes, road markings, traffic signs, poles, etc., represented as

vectorized 3D shapes.

Current LiDAR localization techniques require a separate

localization layer to function, such as a 2D reflectivity

grid[1], a geometry surface map represented as Normal

Distribution Transform (NDT)[2], etc. In order to localize

the vehicle on the HD vector map, the vector layer and the

separate LiDAR localization layer must be strictly aligned.

However, maintaining a separate localization layer comes

with two disadvantages. The first is the larger map size that is

required to store the sensor-dependent data in the localization

layer, which does not scale well to large urban areas. The

second is the inconvenience when it comes to updating

the map. Whenever an old map part needs to be updated,

or a new portion needs to be added, the corresponding

localization layer must be regenerated. Regeneration is not

only cumbersome but also is not possible in some cases if we

had outsourced the map creation process to other dedicated

mapping companies.

On one hand, using separate localization layers will incur

some costs. On the other hand, the potential of the vector

map has not been fully exploited. Motivated by this issue, we
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propose to leverage the vector map directly as the localization

layer. However, this will be a challenging task itself since we

need to associate heterogeneous data, i.e., the LiDAR point

clouds and the sensor-agnostic 3D vectors.

Inspired by the recent development of deep learning, we

use convolutional network[3] to extract semantics from the

online LiDAR point clouds and match the extracted semantic

points against the 3D vectorized elements. To deal with situ-

ations where there are not enough vector elements to match

with, we also introduce a local map maintenance mechanism,

so that short-term ego-motion can still be robustly tracked

without the vector map. We found that vector elements such

as lane lines, stop lines are very effective in constraining

lateral and longitudinal positions respectively, while poles

are effective in both.

The contribution of this paper is summarized as follows:

• A vector map matching module that associates heteroge-

neous data between LiDAR sweeps and the 3D vectors,

based on the semantic extraction of lane lines, stop lines,

and poles from the LiDAR sweeps.

• A fast local map maintenance module that tracks mid-

term ego-motion and keeps the system function robustly

when there are no sufficient vector matches.

• A complete 6-DOF LiDAR-based localization system

that achieves comparable accuracy with existing meth-

ods without using a separate localization layer.

II. RELATED WORK

In the last decades, researchers have developed a large

number of LiDAR-based localization approaches. We briefly

review them according to the map representation used.

A. Methods Using Separate Localization Layers

Levinson et al. [1] represent the map as a 2D grid of

LiDAR’s reflectiveness and performs online localization by

a particle filter. The authors later extended their work in [4]

by replacing the fixed grid with a probabilistic grid. Wolcott

and Eustice[5] further extend the method by introducing for

each grid a Gaussian mixture distribution of the height. Wan

et al. [6] augments a height attribute to the grid and adopts

an error state Kalman filter for localization.

Instead of using 2D grids, another type of method stores

the map as a 3D point cloud accumulated from the LiDAR

sweeps. Many SLAM methods [7] and [8] belong to this

category. Localization is done in an ICP[9] fashion. Instead

of using raw point cloud, Magnusson et al.[2] represent the

geometry surfaces as a set of Normal Distribution Transforms

(NDT), which increases the localization’s robustness. Behley



and Stachniss[10] include normal information computed

from the LiDAR sweeps and represent the map as a set of

oriented points, called surfel map. Chen et al.[11] introduces

semantic labels to the surfel map and makes the system more

robust to dynamic objects.

Despite relatively high accuracy, the above methods re-

quire large storage for their localization layers, which do not

scale well to large scenes.

B. Methods Using Vector Maps

Localization against a vector-form map has been addressed

by some previous works. Schreiber et al.[12] propose to use a

vector map and a stereo camera for localization by matching

detected lane line points with the 3D vector. Poggenhans

et al.[13] segment out road markings from accumulated

top view images computed from stereo cameras and then

vectorize the detections to match with the vector map.

Jeong et al.[14] also follow the stereo setup but represent

the detection as an 8-bit top view image. Localization is

performed using a corresponding bitwise particle filter. Some

other visual approaches[15], [16], [17] then follow, using

different matching strategies.

Biswas and Veloso[18] propose to localize an RGB-D

camera on a 2D vector map consisting of 2D line segments,

which correspond to the boundaries of static obstacles.

During online localization, it performs a RANSAC-based

plane fitting on the depth image and down-projects the plane

filtered points onto 2D, to match with the 2D vector map.

Ma et al.[19] feed the front view image and the projected

LiDAR intensities on a bird’s-eye view (BEV) to a multi-

sensor convolutional network to obtain an inverse truncated

distance image to a 2D lane graph in the overhead view.

The distance image is then used to localize in the lane graph

in the histogram filter framework. The method depends on

camera input and deals mainly with highway environments

where lane structures are relatively simple.

Javanmardi et al.[20] propose to localize a multi-channel

LiDAR in the “abstract map”, which consists of a set of

vectorized 3D planar surfaces of the building walls. An NDT

map is then converted from these vectors for an NDT-based

localization. As the most related work to ours, we differ

from Javanmardi et al. in two major aspects: 1) We match

the LiDAR sweep semantically with the vector map rather

than pure geometrically, where we employ a convolutional

network to extract semantic labels from the LiDAR sweep

before associating match candidates. It is not possible to

match important elements such as lane lines that are blended

with the road surface if a pure geometry matching approach

is used. 2) There are real-world situations where insufficient

vector matches or biased vector matches can lead to drift,

we propose a fast local map maintenance module that keeps

the system function robustly even under these situations.

III. APPROACH

Fig. 1 provides an overview of the proposed approach. The

method adopts an optimization-based multi-sensor fusion

framework. It consumes the online LiDAR sweeps, IMU
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Fig. 1: An overview of the proposed localization system.

Fig. 2: Semantic extraction: four sparse VLP-16 LiDAR sweeps
are concatenated into a denser LiDAR point cloud. Lane line and
pole extractions are performed on the concatenated point cloud.

measurements, and wheel encoder readings as inputs and

outputs optimized poses.

A. Semantic Extraction

In contrast to the traditional ICP based localization meth-

ods, the autonomous driving vector map we use here carries

semantics. Some important semantics classes here, such as

lane lines, cannot be directly matched by ICP since they

are blended with neighboring points in the road surfaces.

To deal with this issue and to better exploit the semantic

info carried in the HD vector map, we design a semantic

extraction module to assign semantic labels to the online

LiDAR sweeps using convolutional networks. We adopt

RangeNet++[3] for such task.

However, two problems prevent us from directly adopting

RangeNet++. First, we are using a VLP-16 LiDAR in our

experiments. The sweeps are four times sparser than the

HDL-64E used in [3], which does not generate satisfying

results. Second, the open datasets[21] used for training in

RangeNet++ does not contain the semantic classes, i.e., lane

lines, poles, we want in our localization context.

To deal with the first problem, we maintain a light-

weight sweep accumulator. The accumulator assembles the



Algorithm 1 LiDAR sweep vector map matching

Input: Vector map M; LiDAR sweep P; Current pose TW
L .

Output: The set of point-to-line matches Ω.

1: Ω = ∅
2: S = SemanticExtraction(P)

3: O = BuildOctree(S)

4: L = RadiusSearch(M,TW
L , 50m)

5: for each lane line li in lane line set L do

6: for each one meter segment c1jc
2
j in li do

7: fj = NearestNeighborSearch(O,
c
1

j+c
2

j

2
)

8: if dist(fj , c
1
jc

2
j ) < τ then

9: Ω = Ω ∪ (fj , c
1
jc

2
j )

10: end if

11: end for

12: end for

four most suitable recent sweeps into a bigger point cloud

that resembles the density of an HDL-64E sweep. The

four candidate sweeps are chosen from recent history. Their

poses are evenly spaced so that the synthesized point cloud

will have a more uniform vertical density than an ad-hoc

selection of the most recent four. The four candidates are

then transformed to the local frame of the most recent sweep,

which is then fed into RangeNet++. Fig. 2 shows an example

of the concatenated sweeps. An accumulation using more

sweeps can also be used, but we found no apparent gain on

the localization result.

To deal with the second problem, we propose an automatic

approach to generate the training data. We first accumulate

a dense local point cloud from the sparse LiDAR sweeps.

The accumulation requires a LiDAR trajectory which can

be obtained by existing LiDAR odometry methods[7], [8].

Since our localizer contains a local map management module

(detailed in Section III-C), we use the local map output

by our localizer instead. A typical local map is shown in

Fig. 4. We adopt [22] to extract pole-like objects in the

dense point cloud. Similarly, we adopt [23] to extract road

markings but keep only those with line shape. The line-

shaped road markings mean those whose major axis’s span

largely exceeds its minor axis’s span in Principle Component

Analysis. After automatic extractions, the point cloud labels

are directly mapped back to the LiDAR sweeps for training.

Note that it does not matter if the trajectory contains drift

since we are only concern about semantic label learning.

B. Vector Map Representation and Matching

The HD vector map represents the traffic elements as a set

of vectorized 3D shapes with semantic labels. Four types of

elements are exploited for matching: poles, lane lines, stop

lines, and road planes.

Lane line matching. The lane line matching process

produces a set of point-to-line-segment matches. First, we

extract lane line points from the current LiDAR sweeps using

the semantic extraction module. An octree index is then

created for the lane line point set. We then divide each vector

(a) (b)

Fig. 3: Vector map matching. (a) The LiDAR sweep overlayed on
the HD vector map. The VLP-16 LiDAR is 30

◦ slanted towards
the road. (b) The point-to-segment matches between the sweep and
the vector map.

lane line into a set of one-meter line segments and finds the

nearest neighbor in the octree for each midpoint in these

line segments. We thus obtain a set of point-to-line segment

matches, denoted as {pj , c
1
jc

2
j}. Algorithm 1 describes this

process in detail. Note that since the octree involved is very

small (e.g., 1000 points), it causes no burden to real-time

performance. The matching of poles and stop lines follows

the same procedure of lane line matching. Fig. 3 illustrates

example matches between the LiDAR sweep and the HD

vector map.

It is worth noting that instead of finding for each LiDAR

sweep point a matched entities in the map, as in traditional

approaches[2], [20], we are matching in the reversed direc-

tion. We found for each vector primitive a matched point in

the LiDAR sweep. This allows us the create more uniform

matches spatially.

Road plane matching. Road plane provides effective

constraints for the vehicle’s roll, pitch, and height. The vector

map engine allows us to retrieve the closest pre-stored road

plane given a query position. We set the query point to the

virtual point ten meters ahead of the vehicle. We keep at

most one inlier match (0.3m) for every 2m×2m tile in the

xy-plane. We can query more road planes around the vehicle,

but we found a single road plane already works well in our

experiment environments. The road plane matching process

produces a set of point-plane matches.

C. Local Map Matching and Maintenance

Using the vector map matches alone for localization might

work for the majority of cases but could also fail when

there are insufficient vector matches or when the matches are

biased. To overcome this problem, we propose to maintain

a local map of oriented LiDAR points to help track the

vehicle’s ego-motion. The local map stores geometry details

in the environment that are not represented in the vector

map. Therefore, the matching between the LiDAR sweeps

and the local map can still keep the vehicle from drifting

until good quality vector matches are observed again. A hash-

based representation and a hash-based matching strategy are

introduced to guarantee real-time performance.

Local map representation. The local map we maintain

spans a 100m radius and consists of a set of oriented

points accumulated from the recent LiDAR sweeps. Each



(a) (b)

Fig. 4: Local map matching. (a) The LiDAR sweep overlayed on
the local map. The local map has a 100m radius and contains points
with normals. (b) The point-to-plane matches between the sweep
and the local map.

point’s normal (orientation) is computed from the cross

product from the adjacent LiDAR points in the LiDAR

sweep. Matching with and updating such a map could be

computation-intensive. For real-time performance, we store

the map using a hash table h : Z
3 7→ R

3 × [0, 1]3 × R.

The hash table maps a voxel index (ix, iy, iz) to at most one

oriented point (vs,ns, rs), which stores a vertex position, a

normal, and a stability scalar respectively We use a voxel

size of 30cm. Since a VLP-16 LiDAR has an effective range

of 0-100m, drift in the local map is limited.

Local map matching. We down-sample the LiDAR sweep

spatially, keeping at most one point per 2m3. We then search

for each downsampled point the nearest neighbor (NN) in

the local map. To serve the NN query quickly, we search for

occupied voxels in a two-layer neighborhood of the query

voxel: {ix+∆ix, iy+∆iy, iz+∆iz} where ∆ix,∆iy,∆iz ∈
{−2,−1, 0,+1,+2}. The search expands outwards and stops

immediately when a match is found. The whole process has

a O(1) time complexity with at most 27 checks. The two-

layer neighborhood covers a space of 1.5m3, which already

satisfies our matching needs. Fig. 4 shows an example of the

local map and the matches found.

Local map update. After the current LiDAR pose has

been optimized, we contribute the sweep into the local

map. For each oriented point in the LiDAR sweep, if its

corresponding voxel is empty, we create a new entry in the

hash table. Otherwise we differentiate two cases:

1) If the normal of the oriented point s′ is compatible

with the oriented point s of the voxel, we update the

point by an exponential moving average

vs := (1− γ)vs + γvs′

ns := (1− γ)ns + γns′

2) Otherwise, we replace the old oriented point by the

new one, and mark the voxel as unstable. Unstable

voxels will receive lower weights in optimization.

To avoid an over-growing map, old parts of the local map

are regularly retired. In our current implementation, when

the vehicle has accumulated a 50m distance since the last

local map clean-up, we retire the outer parts of the map that

are beyond the predefined radius. This is done by a full scan

of the hash table.

D. Sliding Window Optimization

We optimize the corresponding IMU states for the recent

N LiDAR sweeps

xi = [p⊤

i v⊤

i q⊤

i ba
⊤

i bg
⊤

i
]⊤ (1)

where i indexes the LiDAR frames. p and v are the IMU’s

position and velocity in world coordinates. q is the quater-

nion from the IMU body frame to the world frame. ba and

gg are respectively the accelerameter and gyroscope bias.

The sliding window size N ranges in {2, . . . , 5} in practice.

The objective function is

min
x1,...,xN

{ N
∑

i=1

(

‖rPPM(xi)‖
2 + ‖rPLM(xi)‖

2 + ‖rWS(xi)‖
2
)

+
N−1
∑

i=1

‖rIP(xi,xi+1)‖
2
Σ

}

(2)

where r• represents a residual vector. The subscript abbre-

viations stand for PPM (point-plane-match), PLM (point-

line-match), WS (wheel speed) and IP (IMU preintegration)

respectively. This is a non-linear least squares problem,

which can be solved by the Gauss-Newton method. We

employ Ceres Solver[24] for the optimization.

1) The point-line-match and point-plane-match factors.

As described in section III-B and III-C, the LiDAR-vector

map matches and the LiDAR-local map matches are ulti-

mately transformed into a set of point line matches and point

plane matches, which can be expressed as

rPPM(xi) =
∑

j

(fWj − cj)
⊤nj (3)

rPLM(xi) =
∑

j

‖(fWj − c1j )× (fWj − c2j )‖

‖c1j − c2j‖
(4)

where fWj = qi ⊗ fj + pi denotes the sample point fi
detected from the LiDAR frame, transformed into world

coordinates; (cj ,nj) represents the center and normal of a

point-plane-match’s plane in world frame; (c1j , c
2
j ) denotes

the two endpoints of a point-line-match’s line segment, in

world coordinates. Eq. 3 and Eq. 4 represent the point-to-

plane distance and the point-to-line distance respectively.

2) The wheel speed factor. The factor wants the vehicle

velocity obtained respectively from the IMU and the wheel

encoders to agree.

rWS(xi) = RV
I

(

q−1

i ⊗ vi + [ωi − bgi
]×t

I
V

)

(5)

− [0, v̄i, 0]
⊤ (6)

where [0, v̄i, 0]
⊤ is the vehicle velocity observed by the

wheel encoders, expressed in the vehicle frame. The right

hand side of Eq. 5 is the same vehicle velocity but observed

by the IMU, which is the sum of the IMU body’s velocity

q−1

i ⊗ vi and the lever-arm compensation [ωi − bgi
]×t

I
V

induced by the angular velocity ωi − bgi
. RI

V and tIV
denote respectively the rotation and translation from frame

V (vehicle) to frame I (IMU).



Fig. 5: The test platforms used in our experiments. The IMU is
located in the box right under the VLP-16 LiDAR.

3) The IMU preintegration factor. The IMU preintegra-

tion factor wants a LiDAR sweep’s starting state and ending

state to agree the IMU measurements accumulated within

this LiDAR sweep. Note that the ending moment of a LiDAR

sweep is the starting moment of the next LiDAR sweep. The

factor is expressed as

rIP(xi,xj) = ∆xij −∆x̂ij (7)

where ∆xij is the IMU preintegration between frame i and

frame j, defined as

∆xij ,













R⊤

i (pj − pi −
1

2
g∆t2 − vi∆t)

R⊤

i (vj − g∆t− vi)
q−1

i ⊗ qj

baj − bai

bgj
− bgi













(8)

Here, g denotes the gravity in world frame; ∆t denotes

the time elapsed between the two frames. The ∆x̂ij is

also the IMU preintegration, but computed from the IMU

measurements between ti and tj , instead of from xi and xj .

Please refer to Qin et al.[25] for a detail derivation.

E. State predictor

The optimized poses obtained from the sliding window are

at least one frame late against the latest sensor measurement.

To compute real-time poses, we maintain a dedicated state

predictor. The predictor internally holds an IMU base state

obtained from the optimization and the IMU stream that ar-

rives later than the base state. Given a pose prediction request

with a timestamp, the predictor responds by integrating the

cached IMU measurements starting from the base state and

ending upon the input timestamp. The cached IMU stream

should be kept small to avoid large noise accumulation.

As such, the base state is updated immediately from the

sliding window when a new optimized state is available. As

a result, the predictor’s base state is updated at 10Hz, while

the localization results can be outputted at a higher custom

rate, e.g., 100Hz.

IV. EXPERIMENTS

Fig. 5 shows the test platform. The VLP-16 LiDAR

is configured to spin at 10Hz. The OpenIMU and wheel

encoders report measurements respectively at 100Hz and

50Hz. A NovAtel PwrPak7D-E1 INS module is used as

a ground truth generation device. We use two HD vector

maps for testing, as shown in Fig. 6. One is a 1.1km ×
0.9km size urban area. The other is a 11km highway. Both

maps are created by a third-party mapping company using

(a) Zhongguancun urban map (b) G7 highway map

(c) An urban image sample (d) A highway image sample

Fig. 6: The urban and highway HD vector maps in our experiments.

Method
2D ground
reflectivity
images[1]

NDT point
clouds[2]

Ours

Map storage
requirement

25MB 314MB 0.62MB

Mean accuracy 0.138m 0.135m 0.153m

Standard
deviation

±0.095m ±0.083m ±0.097m

TABLE I: Map size and localization accuracy comparison. The
map sizes are calculated from the original urban map data corre-
sponding to Fig. 6a. The accuracy values of [1] is taken from their
original publication, while [2]’s accuracy values are evaluated from
our re-implementation.

high-accuracy mobile-mapping solutions. The maps are geo-

referenced in the WGS84 coordinates. We convert them into

a local ENU (East-North-Up) coordinate frame for matching,

where the local ENU frame’s origin is set to the map data’s

centroid.

A. Quantitative Evaluation

We evaluate our method on two data sequences recorded

within the highway map and the urban map respectively. The

highway sequence is 10km long and consists of 10 minutes

of data. The urban sequence is 9km long, and consists of 20

minutes of data. The urban sequence includes a considerable

number of turns, traffic light waitings, and dynamic objects.

We use the NovAtel trajectories the ground truth in the

evaluations. Fig. 7 shows the quantitative evaluation results.

In the figures, x and y refer to the translation error in the

longitudinal and lateral directions of the vehicle, while z

is the translation error in global height. In most cases, our

translation errors are within 20cm in both longitudinal and

lateral directions, and our rotation errors are within 2◦. The

localizer shows larger average errors and jittering in the

urban sequence than in the highway sequence. We suspect

this is caused by the more complex environments in the urban

sequence, which results in larger noises for the matches

found for optimization.

We also compare our method with NDT[2], an existing



(a) The highway sequence.

(b) The urban sequence.

(c) Translation errors on highway.

(d) Rotation errors on highway.

(e) Translation errors on urban.

(f) Rotation errors on urban.

(g) Proposed v.s. NDT

(h) Proposed v.s. NDT

(i) Proposed v.s. NDT

(j) Proposed v.s. NDT

Fig. 7: Localization accuracy evaluation on the highway sequence and the urban sequence. We compare our trajectories to NDT[2], and
use the RTK-enabled trajectories from the NovAtel INS module as ground truth. For the majority of cases, our translation errors are
within 20cm, and our rotation errors are within 2

◦. Overall the proposed method achieves comparable accuracy with NDT that uses a
separate point cloud layer stored as 3D normal distance transforms.

LiDAR-based method that uses a separate point cloud (nor-

malized distance transforms) layer. We have reimplemented

[2] and have incorporated the IMU information using our

optimization framework in Section III-D. Our accuracies are

slightly worse than but are comparable to that of NDT[2],

whose results are also shown in Fig. 7. Table I also provides

a comparison on the map size versus accuracy over three

LiDAR-based methods, including a Levinson et al.[1], NDT,

and ours. The map size is calculated from the original map

data used to create the urban vector map in Fig. 6a. We

use a 10 × 10cm2 grid and 10 × 10 × 10cm3 voxel for [1]

and NDT respectively. Note that we have not implemented

Levinson et al.[1] but merely compute a map size estimate

corresponding to its map representation. The accuracies

are summarized from the reported values in their original

publication. In summary, the proposed approach is able to

achieve a comparable accuracy with traditional layer-based

methods, albeit using a much smaller vector map.

B. Ablation Study

We perform ablation studies to access the contributions

from different components in our system. The modules to

disable include the pole matches, the lane line matches, the

road plane matches, and the local map matches. The perfor-

mances on the highway sequence and the urban sequence are

evaluated separately.

Pole
matches

Lane
line

matches

Local
map

matches

Road
plane

matches
Behaviors

Drift
location

× X X X no drift -

X × X X no drift -

X X × X no drift -

X × × X no drift -

× X × X
drift

quickly
1%

× × X X

drift
slowly
in xy

20%

X × X ×

drift
slowly

in height
30%

TABLE II: Ablation study on the urban sequence.

Pole
matches

Lane
line

matches

Local
map

matches

Road
plane

matches
Behaviors

Drift
location

× X X X
longitudinal

drift
10%

X × X X no drift -

X X × X no drift -

X × × X
drift

quickly
15%

× X × X
drift

quickly
starting

× × X X
drift

quickly
starting

TABLE III: Ablation study on the highway sequence.



Table II summarizes the ablation study outcomes of the

urban sequence. We found that when only one of the com-

ponents is disabled, the localizer can still function robustly.

However, problems occur when two or more modules are

disabled. When lane lines and poles are both disabled, the

system slowly drifted on the xy-plane, as depicted by the red

trajectory in Fig. 8a. The drift is expected since there is no

map to compare against, so that the localizer has degenerated

to a LiDAR-intertial odometry. In another case, when both

lane lines and road planes are disabled, the system slowly

drifted in height, as depicted by the red trajectory in Fig. 8b.

The drift in height finally leads into a situation that we can

no longer find pole matches, which subsequently results in

drift on the xy-plane.

Table III summarizes the ablation study outcomes of the

highway sequence. The system is able to produce good

trajectories when only the lane lines or only the local map

are disabled. However, when only the poles are disabled,

the system demonstrates slow longitudinal drift. The amount

of drift accumulates as time goes by. Fig. 9a visualizes

two longitudinal drifts at two respective locations during

the course. The visualization compares the arrows’ positions

in the vector map to those observed from the local map.

At the earlier location, the local map lags behind by one-

fourth of the arrow, while at the later localization, the local

map lags behind by a full arrow. When only the poles are

enabled, the system fails at 10% during the course. It is

worth noting that this pole-only setting fails in the highway

sequence but succeeds in the urban sequence. The reason

could be that poles in highways are much sparser than those

in urban scenes, which leads to weaker spatial constraints in

the highway scene. However, when the local map is turned on

for the pole-only setting, the localizer performs robustly. This

showcases the contribution of the local map maintenance

module.

We also perform a simulated experiment to visualize the

local map’s contribution more intuitively. We deliberately

remove a road segment from the vector map and test whether

the system can reliably navigate over the removed segment

with or without the local map. At the same time, the pole

matches are deliberately turned off as well to avoid gener-

ating potential matches outside the radius of the removed

road segment. Fig. 10 illustrates the experiment results.

The removed segment is 100m long. The red trajectory

represents the result without the local map, which shows

visible lateral drift. Luckily, the vehicle is able to get back

into the correct lane after turning right at the crossroad since

the turn converts the lateral drift into a longitudinal drift.

On the other hand, with the local map enabled, the green

trajectory overlays correctly with the ground truth.

C. Runtime

The system’s runtime consists of four major types of op-

erations, namely, semantic extraction, vector map matching,

local map matching, and pose optimization. Fig. 11 shows the

time cost composition through the course of a sequence. The

whole system runs in real-time on a PC with an 8-Core i7

(a) (b)

Fig. 8: Ablation study on the urban sequence. Disabling only one
component does not result in drift. (a) Disabling both lane lines and
poles results in drift on the xy-plane. (b) Disabling both lane lines
and road planes result in height drift, which subsequently leads to
xy-drift because poles can no longer be matched.

(a) Trajectories from different ablation settings.

(b) Error curves for the pole-only setting.

(c) Error curves for the lane line plus local map setting.

Fig. 9: Ablation study on highway sequence. (a) Activating poles
and local map works robustly. Activiting poles and lane lines also
work robustly. (b) Unlike the urban scenario, using poles alone
without the local map in highway result in drift. (c) Using both
lane lines and local map result in slow longitudinal drift.

CPU, a 1080Ti GPU, and 32GB RAM. Here, real-time means

10Hz for the back-end optimization thread and 100Hz for the

front-end prediction thread. Note that the semantic extraction

module consumes the majority of the running time. Since

semantic extraction is uploaded to GPU, it can be pipelined

with the rest of the tasks running on CPU. Therefore, the

system’s frame rate is determined by lower one between the

two devices: FPSSYSTEM = min(FPSCPU TASK, FPSGPU TASK).
The price of pipelining is a one-frame delay for the freshest

optimization result. The state predictor in Section III-E is

explicitly designed to cope with this situation. The delay only

affects the predictor’s base state, which is by design, not the



Fig. 10: Accessment of the local map’s contribution. A 100m road
segment is deliberately removed from the vector map to simulate
the situation of insufficient vector matches. The trajectory shows
no visible drift when the local map is enabled but a visible lateral
drift when the local map is disabled.

Fig. 11: The localizer’s runtime decomposition.

freshest, while the real-time state is computed by integrating

the IMU measurements from the base state to the now state.

The time cost of the optimization corresponds to a sliding

window size N = 2. We found no obvious performance gain

using a larger sliding window size in our experiments.

V. CONCLUSION

We have presented a LiDAR-based localization solution

on an HD vector map without using a separate localization

layer. Experiments show that the proposed method is able

to achieve the same level of accuracy compared to existing

separate layer-based approaches while requiring orders of

magnitude less map storage. In future work, we need to better

exploit dashed segments for longitudinal positioning so that

the system can deal more robustly with highway scenarios

even without pole-like objects.
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[12] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking

based localization using highly accurate maps,” in 2013 IEEE Intelli-

gent Vehicles Symposium (IV), pp. 449–454, IEEE, 2013.
[13] F. Poggenhans, N. O. Salscheider, and C. Stiller, “Precise localization

in high-definition road maps for urban regions,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pp. 2167–2174, IEEE, 2018.

[14] J. Jeong, Y. Cho, and A. Kim, “Hdmi-loc: Exploiting high definition
map image for precise localization via bitwise particle filter,” IEEE

Robotics and Automation Letters, vol. 5, no. 4, pp. 6310–6317, 2020.
[15] A. Ranganathan, D. Ilstrup, and T. Wu, “Light-weight localization

for vehicles using road markings,” in 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 921–927, IEEE,
2013.

[16] Y. Lu, J. Huang, Y.-T. Chen, and B. Heisele, “Monocular localization
in urban environments using road markings,” in 2017 IEEE Intelligent

Vehicles Symposium (IV), pp. 468–474, IEEE, 2017.
[17] Z. Xiao, D. Yang, T. Wen, K. Jiang, and R. Yan, “Monocular

localization with vector hd map (mlvhm): A low-cost method for
commercial ivs,” Sensors, vol. 20, no. 7, p. 1870, 2020.

[18] J. Biswas and M. M. Veloso, “Localization and navigation of the
cobots over long-term deployments,” The International Journal of

Robotics Research, vol. 32, no. 14, pp. 1679–1694, 2013.
[19] W.-C. Ma, I. Tartavull, I. A. Bârsan, S. Wang, M. Bai, G. Mattyus,
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